NORTHWESTERN ENERGY HYDRO FLEET CHEOPS MODEL OPERATIONS/VERIFICATION REPORT

Prepared for: NORTHWESTERN ENERGY Butte, Montana

Prepared by: HDR ENGINEERING, INC. OF THE CAROLINAS Charlotte, North Carolina

FEBRUARY 2015

FC

NORTHWESTERN ENERGY HYDRO FLEET **CHEOPS MODEL OPERATIONS/VERIFICATION REPORT**

TABLE OF CONTENTS Title

Section

Page No.

EXECUT	IVE SUMMARY	1
1 INT	RODUCTION	3
2 Pr	ОЈЕСТ ДАТА	7
	1 Thompson Falls Development (FERC No. 1869)	9 .11 .12 .13 .15 .16 .18 .19 .20 .21 .22 .23
3 Op	ERATIONS MODEL – BASE CASE	31
3.1 3.2	Logic Input Data	.33 .34 .34 .34 .35 .35 .35 .35 .36 .36 .36
	 3.2.3 Operational Data	.39 .39 .39 .40

TABLE OF CONTENTS

Continued

Section

Title

Page No.

		3.2.3.5	Maximum Flows	40
		3.2.3.6	Recreation Flows	
		3.2.3.7	Bypass Flows	41
		3.2.3.8		
	3.2	2.4 Genera	tion Data	41
		3.2.4.1	Headloss Coefficients	42
		3.2.4.2	Turbine Efficiency Curves	42
		3.2.4.3	Generator Efficiency Curve	
		3.2.4.4	Wicket Gate Leakage	43
		3.2.4.5	Powerhouse Weekend Operations	43
		3.2.4.6	Plant Flow Type	43
		3.2.4.7	Maintenance	44
4	O PERA'	TIONS MOD	EL CALIBRATION/VERIFICATION PROCESS	45
	4.1 Su	mmary of M	odeled Results versus Historical Data	46
			cal Baseline	
	4.	1.2 Scenari	o V_2014WY	47
5	SUMMA	ARY AND CO	ONCLUSIONS	
	5.1 Su	mmary		63
	5.2 Co	onclusions		63

APPENDIX

APPENDIX A	PERIOD OF RECORD HYDROLOGY COMPARISON
APPENDIX B	BASE CASE SCENARIO DEFINITION
APPENDIX C	COMPARISONS OF THE 15-MINUTE MODEL SIMULATED, HOURLY
	HISTORICAL PI, AND HISTORICAL DAILY POWER VERSUS FLOW
	VALUES FOR EACH POWERHOUSE

NORTHWESTERN ENERGY HYDRO FLEET CHEOPS MODEL OPERATIONS/VERIFICATION REPORT

LIST OF FIGURES Title

Figure

Page No.

1-1	NORTHWESTERN ENERGY HYDRO FLEET	.6
2-1	MADISON SMOOTHED FOR CALANDER YEAR 19882	27
3-1	CHEOPS MODEL EXECUTION FLOW CHART	31
3-2	CHEOPS SCHEDULING FLOW CHART	32
3-3	CHEOPS SCENARIO	\$3
4-1	V_2014 WY AND HISTORICAL HEBGEN OPERATIONS5	50
4-2	V_2014 WY AND HISTORICAL MADISON OPERATIONS5	51
4-3	V_2014 WY AND HISTORICAL CANYON FERRY OPERATIONS5	52
4-4	V_2014 WY AND HISTORICAL HAUSER OPERATIONS5	53
4-5	V_2014 WY AND HISTORICAL HOLTER OPERATIONS5	54
4-6	V_2014 WY AND HISTORICAL BLACK EAGLE OPERATIONS5	55
4-7	V_2014 WY AND HISTORICAL RAINBOW OPERATIONS5	56
4-8	V_2014 WY AND HISTORICAL COCHRANE OPERATIONS5	57
4-9	V_2014 WY AND HISTORICAL RYAN OPERATIONS	58
4-10	V_2014 WY AND HISTORICAL MORONY OPERATIONS5	59
4-11	V_2014 WY AND HISTORICAL THOMPSON FALLS OPERATIONS	50
4-12	V_2014 WY AND HISTORICAL MYSTIC LAKE OPERATIONS6	51
4-13	V_2014 WY AND HISTORICAL WEST ROSEBUD LAKE OPERATIONS	52

NORTHWESTERN ENERGY HYDRO FLEET CHEOPS MODEL OPERATIONS/VERIFICATION REPORT

LIST OF TABLES Page No. Title Table 2 - 1NORTHWESTERN ENERGY CHEOPS MODEL PLANTS......7 2-2 LOWER MADISON RIVER (BELOW MADISON DAM) MANUAL PULSE FLOW PROTOCOL......10 2-3 MODELED TOTAL DISCHARGE COMPARED TO HISTORICAL AND USGS 4-1 4-2 V 2014WY: MODELED VERSUS HISTORICAL GENERATION

Executive Summary

NorthWestern Energy (Licensee) contracted with HDR Engineering, Inc. of the Carolinas (HDR) to develop an operations model of the PPL Montana Hydro Assets (Hydros) recently acquired by NorthWestern Energy, including: the Missouri-Madison Hydroelectric Project (Federal Energy Regulatory Commission (FERC) Project No. 2188) on the Madison and Missouri Rivers; Thompson Falls Hydroelectric Project (FERC Project No. 1869) on the Clark Fork River; and the Mystic Hydroelectric Project (FERC Project No. 2301) on West Rosebud Creek. The U.S. Bureau of Reclamation (USBR) Canyon Ferry facility on the Missouri River is also included in the modeled plants and these are referred to as the "modeled system." This operations model utilizes HDR's proprietary Computer Hydro Electric Operations and Planning Software (CHEOPS).

CHEOPS utilizes daily flows, plant generating characteristics, and reservoir/plant operating criteria to simulate project operation. The program simulates operations of a plant to meet user-specified goals (e.g. maximize energy production while meeting all regulatory constraints). The model is fully capable of determining headwater elevation, headlosses, net head, turbine discharge and spill, power generation, and other user-specified variables in 15-minute increments. The NorthWestern Energy Hydro Fleet CHEOPS Model (NWE CHEOPS Model) was custom configured for the system based on the specific system constraints such as flow requirements, target reservoir elevations, powerhouse equipment constraints, and reservoir storage support between operators (NorthWestern Energy and USBR). CHEOPS utilizes daily flows, plant generating characteristics, and operating criteria of the system to simulate operation, allocate flow releases, and calculate energy production within the system. Although CHEOPS computes generation and flows at discreet 15-minute increments, it is designed for long-term analysis of the effects of operational and physical changes made to the modeled hydro system.

The purpose of this operations and verification report is to document inputs and assumptions used in the development of the model, to demonstrate that the model reasonably characterizes operations of the twelve NorthWestern Energy and one USBR developments modeled, and to demonstrate the model is adequate for use in evaluating the effects of alternative operating

scenarios. Future sensitivity analyses will include an evaluation of peaking capability throughout the system. Model results presented in this report represent the model configuration as of February, 2015.

The NWE CHEOPS Model is coded to run day-to-day operations based on a single set of operating conditions or rules. Actual project operations generally follow the operating rules; however, human intervention periodically deviates from the general operating rules to accommodate day-to-day realities such as equipment failure and maintenance, changing hydrologic conditions, power demands, and other factors.

In the opinion of HDR, verification results show the operations model and the hydrologic inputs compare favorably to historical data, reasonably characterize system operations, and are appropriate for use in evaluating the effects of alternative operating scenarios on generation, reservoir levels, and outflows. The CHEOPS software and this operations model are tools that, as this report demonstrates, can be successfully used to evaluate the relative sensitivity and response of the system modeled to changing operational constraints. As with any model, accuracy is highly dependent on input data; consequently, model results should be viewed in a relative, rather than an absolute, context.

Section 1 Introduction

NorthWestern Energy (Licensee) contracted with HDR Engineering, Inc. of the Carolinas (HDR) to develop an operations model of the PPL Montana Hydro Assets (Hydros) recently acquired by NorthWestern Energy, including: the Missouri-Madison Hydroelectric Project (Federal Energy Regulatory Commission (FERC) Project No. 2188) on the Madison and Missouri Rivers; Thompson Falls Hydroelectric Project (FERC Project No. 1869) on the Clark Fork River; and the Mystic Hydroelectric Project (FERC Project No. 2301) on West Rosebud Creek. The U.S. Bureau of Reclamation (USBR) Canyon Ferry facility on the Missouri River is also included in the modeled plants and these are referred to as the "modeled system." This operations model utilizes HDR's proprietary Computer Hydro Electric Operations and Planning Software (CHEOPS).

HDR created the Computer Hydro Electric Operations and Planning Software (CHEOPSTM) hydropower system simulation model as a flexible, reliable, and easy-to-use tool for evaluating the effects on hydropower projects resulting from a wide range of physical plant changes (e.g., turbine upgrades) and operational constraints (e.g., reservoir storage flexibility), as well as the effects of changes in hydrology or upstream regulation. One of the many strengths of CHEOPS is the degree to which each individual model may be customized to suit the particular site-specific operating characteristics of a single station or an entire river system. The model is tailored to meet the demands of the particular plant/system being modeled, and the program architecture provides a platform for investigating each project-specific feature under scrutiny.

CHEOPS utilizes daily flows, plant generating characteristics, and reservoir/plant operating criteria to simulate project operation. The program simulates operations of a plant to meet user-specified goals (e.g. maximize energy production while meeting all regulatory constraints). The model is fully capable of determining headwater elevation, headlosses, net head, turbine discharge and spill, power generation, and other user-specified variables in 15-minute increments. The NorthWestern Energy Hydro Fleet CHEOPS Model (NWE CHEOPS Model) was custom configured for the system based on the specific system constraints such as flow requirements, target reservoir elevations, powerhouse equipment constraints, and reservoir

storage support between operators (NorthWestern Energy and USBR). CHEOPS utilizes daily flows, plant generating characteristics, and operating criteria of the system to simulate operation, allocate flow releases, and calculate energy production within the system. Although CHEOPS computes generation and flows at discreet 15-minute increments, it is designed for long-term analysis of the effects of operational and physical changes made to the modeled hydro system.

Model verification is intended to validate the input data and ability of the programmed logic to simulate daily hydroelectric and reservoir operations. A "Base Case" scenario has been established following the current system-wide operation rules outlined in the model verification process. The Base Case scenario does not include the forced elevations (historical operations) applied in the verification scenario. The Base Case scenario is used as the baseline or starting point (operating rules and settings) for all subsequent analyses. HDR performed model verification using comparisons of actual and model-estimated generation and total discharge. The verification simulation for hydrology computations was completed for the period of record 1/1/1988 through 11/30/2014, while the generation/elevation verification scenario was performed for water year 2014 (10/1/2013 - 9/30/2014) in order to capture the most recent modifications at the Rainbow project. The purpose of this report is to document inputs and assumptions used in the development of the model, to demonstrate that the model reasonably characterizes operations of the thirteen facilities modeled, and to demonstrate the model is adequate for use in evaluating the effects of alternative operating scenarios.

The NWE CHEOPS Model is coded to run day-to-day operations based on a single or limited set of operating conditions or rules. Actual project operations generally follow the operating rules; however, human intervention periodically deviates from the general operating rules to accommodate day-to-day realities such as equipment failure and maintenance, changing hydrologic conditions, power demands, and other factors. In addition to differences between modeled operations versus actual operations that include human interventions, there are also inherent discrepancies due to input data inaccuracies (e.g., differences in calculated hydrology data, turbine or generator efficiencies, or reservoir storage curves). It is important to understand model results will never completely match historical or future operations due to these differences between actual operating conditions and modeled conditions. The NWE CHEOPS Model includes a definition of the physical capabilities at the Hebgen and West Rosebud Lake Developments and physical plus generation capabilities at the Madison, Canyon Ferry, Hauser, Holter, Black Eagle, Rainbow, Cochrane, Ryan, Morony, Thompson Falls, and Mystic Developments, as well as operational logic to reflect reservoir operations at all facilities. The Canyon Ferry operational logic in the model allows the user to define the Canyon Ferry support of the flow requirements below the Holter development ("*Operating Guidelines PPL & BOR Agrmt.pdf*").

Major features of the developments in the basin are shown in Figure 1-1. This schematic is the basis for the conceptual model that was used to develop the NWE CHEOPS Model. The NWE CHEOPS Model has thirteen nodes (the thirteen developments previously outlined) that correspond to the major hydrologic junctures in the modeled system and two flow calculation locations (Kirby Ranch downstream of Hebgen Dam and the Mystic bypass reach which is downstream of Mystic Lake Dam and upstream of Mystic Lake Powerhouse discharge) that correspond to locations of operational flow requirements. The model accounts for inflows, discharge, change in reservoir storage, and power generation at the various reservoir nodes and the flows at the two flow-only node locations.

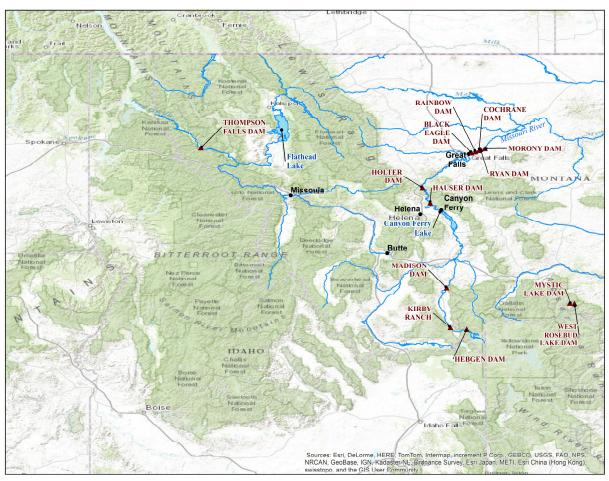


FIGURE 1-1 NORTHWESTERN ENERGY HYDRO FLEET

Section 2 **Project Data**

NorthWestern Energy owns and operates the developments of Hebgen, Madison, Hauser, Holter, Black Eagle, Rainbow, Cochrane, Ryan, Morony, Thompson Falls, Mystic Lake, and West Rosebud Lake. The USBR owns and operates the Canyon Ferry Development. Each development is simulated within the NWE CHEOPS Model and consists of dams and multi-unit powerhouses as shown in Table 2-1.

Upstream Downstream FERC Drainage						
Development	Upstream Reservoir	Downstream Reservoir	FERC Project No.	Drainage Area (square miles)		
Hebgen		Madison	2188	932		
Madison	Hebgen	Canyon Ferry	2188	2,208		
Canyon Ferry	Madison	Hauser		15,908		
Hauser	Canyon Ferry	Holter	2188	16,723		
Holter	Hauser	Black Eagle	2188	16,977		
Black Eagle	Holter	Rainbow	2188	22,909		
Rainbow	Black Eagle	Cochrane	2188	22,920		
Cochrane	Rainbow	Ryan	2188	22,942		
Ryan	Cochrane	Morony	2188	22,947		
Morony	Ryan		2188	23,054		
Thompson Falls			1869	20,924		
Mystic Lake		West Rosebud Lake	2301	48		
West Rosebud Lake Mystic			2301	65		

TABLE 2-1 NORTHWESTERN ENERGY CHEOPS MODEL PLANTS

2.1 Hebgen Development (FERC Project No. 2188)

Hebgen Reservoir is located near Grayling, Montana, and inundates the Madison River Valley adjacent to the western edge of Yellowstone National Park, in the vicinity of West Yellowstone Montana, but beyond the boundaries of the Park. Hebgen Dam is used to store and regulate approximately 387,000 acre-feet of water, with a crest elevation of 6,546 feet. All vertical elevations referenced in this report are National Geodetic Vertical Datum (NGVD) 1929 unless noted. There are no generating facilities at this development; discharges are released through the

outlet works and a side-channel spillway.¹ Hebgen is operated as a storage facility, with releases providing head and flow to the downstream hydroelectric developments, following the operational requirements (*NWEhydrooperationsplan.docx*):

- Maintain a continuous minimum flow of 150 cubic feet per second (cfs) in the Madison River as measured at the United States Geological Survey (USGS) gage 06038500 and a continuous minimum flow of 600 cfs at USGS gage 06038800 near the Kirby Ranch.
- Limit flows at USGS gage 06038800 near Kirby Ranch to no more than 3,500 cfs.
- Limit changes in outflow from Hebgen Dam to no more than 10 percent per day for the entire year.
- Maintain the elevation of Hebgen Reservoir between 6,530.26 and 6,534.87 feet (normal full pool elevation) from June 20 through October 1. In a typical year, operate the Hebgen Development so that Hebgen Reservoir would refill to approximately its full pool elevation of 6,534.87 feet in late June or early July, then maintain Hebgen Reservoir near its full pool elevation until September 1. Between September 1 and March 31 of a typical year, draft Hebgen Reservoir to approximately an elevation of 6,524 feet. During this period, as Hebgen Reservoir is being drafted, to the extent practical given the variability of inflows to Hebgen Reservoir, maintain a reasonably uniform discharge from the Hebgen Development. After April 1 of a typical year, operate the Hebgen Development to refill Hebgen Reservoir to at least elevation 6,530.26 feet by June 20.
- Implement Article 419 Madison River Flushing Flow Plan (provide up to 3,500 cfs at USGS gage 06038800 for a minimum of 3 days in years when volume in both runoff and forecast and Hebgen storage triggers are met).
- Implement the Missouri River Coordination Agreement with the USBR (dated March 30, 1972, amended June 8, 1979). For the purpose of implementing the Missouri River Coordination Agreement with USBR, drafting of the Hebgen Reservoir shall not begin until all storage in Canyon Ferry Reservoir above elevation 3,769 feet (28 feet below Canyon Ferry's normal full pool) has been utilized.

¹ Federal Energy Regulatory Commission (FERC). 2000. Missouri-Madison Hydroelectric Project, FERC No. 2188, Order Issuing New License. September 2000.

For modeling purposes:

- Due to the infrequency, the Madison River Flushing Flow Plan flows are not included in the definition of the Base Case scenario.
- Release requirements which are measured at USGS gage 06038800 are simulated based on Hebgen releases plus the incremental inflow to Kirby Ranch. This duplicates actual operations.

2.2 Madison Development (FERC Project No. 2188)

Madison Dam is located near McAllister, Montana, on the Madison River approximately 63 river miles downstream from Hebgen Dam and impounds approximately 42,000 acre-feet of water storage, known as Ennis Lake². The Madison Development includes a powerhouse with four turbine-generator units with a maximum capacity of approximately 9 megawatts (MW) (*Hydro Capacity-Limits Rev 9.xlsx*). Madison is operated as a base load, run-of-river generating facility, with releases providing head and flow to the downstream hydroelectric developments, following the operational requirements (*NWEhydrooperationsplan.docx*):

- Operate Madison Dam as a base load, run-of-river project (i.e., the dam shall not be used for peaking, load following, or providing non-spinning operating reserves).
- Coordinate with the operation of the Hebgen Development to maintain a continuous minimum flow of 1,100 cfs in the Madison River as measured at USGS gage 06041000 downstream from the Madison Development.
- Maintain the elevation of Ennis Lake between 4,840 and 4,841 feet (normal full pool) when ice is absent and at 4,839 feet between early December and early April.
- Provide an instantaneous minimum spawning flow of 200 cfs in the bypass reach from April 1 through June 30 and an instantaneous minimum (maintenance) flow of 80 cfs in the bypass reach from July 1 through March 31.
- Do not reduce flow in the Madison bypass reach from 600 cfs to minimum flow by more than 100 cfs per hour, and do not increase flow from less than 600 cfs to 600 cfs by more

² Federal Energy Regulatory Commission (FERC). 2000. Missouri-Madison Hydroelectric Project, FERC No. 2188, Order Issuing New License. September 2000.

than 100 cfs per hour (except when needed to meet the 1,100 cfs minimum flow below the powerhouse or to avoid overfilling Ennis Lake).

- Implement Article 419 Madison River Flushing Flow Plan.
- Implement Article 420 Flow Restoration Plan (restore full river flow within 40 minutes after a full plant trip).
- Implement Article 413 Final Madison River Pulse Flow Protocol (implement both the Madison Decision Support System (DSS) program or backup manual protocol, shown below, as required).

TABLE 2-2 LOWER MADISON RIVER (BELOW MADISON DAM) MANUAL PULSE FLOW PROTOCOL

Manual Protocol	Tomorrow's Predicted Maximum Air Temperature (deg F)at Three Forks and Corresponding Pulse Flow (cfs)				
Today's Maximum Powerhouse Water Release Temperature (deg F)	Air Temp >= 80 and < 85	Air Temp >= 85 and < 90	Air Temp >= 90 and < 95	Air Temp >= 95 and < 100	Air Temp >= 100 and < 105
greater or equal to 68 and less than 69	1,150	1,150	1,150	1,150	1,400
greater or equal to 69 and less than 70	1,150	1,150	1,400	1,600	1,600
greater or equal to 70 and less than 71	1,150	1,400	1,600	1,800	2,000
greater or equal to 71 and less than 72	1,400	1,450	1,600	1,800	2,100
greater or equal to 72 and less than 73	1,450	1,600	1,800	2,000	2,400
greater or equal to 73 and less than 74	1,600	1,800	2,100	2,600	2,800
greater or equal to 74 and less than 75	1,800	2,600	2,600	2,800	3,000
greater or equal to 75	2,600	2,800	3,200	3,200	3,200

For modeling purposes:

- The bypass flow ramping rate restrictions are not simulated in the model. If desired, the bypass flow ramping rate functionality could be added to the model with additional custom coding.
- Due to the infrequency, the Madison River Flushing Flow Plan flows are not included in the definition of the Base Case scenario.
- Since CHEOPS does not model plant outage due to tripping, the Flow Restoration Plan is not modeled.

• CHEOPS does not currently use temperature inputs to implement scheduling and release logic. The Madison River Pulse Flow Protocol will be implemented through use of scheduling by month and day to allow for alternatives analysis.

2.3 Canyon Ferry Development

The Canyon Ferry Development is located near Helena, Montana, on the Missouri River below the confluence of the Madison, Jefferson, and Gallatin Rivers approximately 110 river miles downstream of Madison Dam. The spillway capacity at Canyon Ferry Dam is 150,000 cfs, and the total reservoir capacity is 2,051,000 acre-feet at elevation 3,800.00. Four river outlets are in the spillway section of the dam. The maximum discharge capacity of these outlets is 9,500 cfs. One 156-inch-diameter pumping intake pipe is embedded in the concrete of the dam near the left abutment for the Helena Valley Pumping Plant for irrigation water supply. Three 162-inch-diameter penstock pipes for the power generating units are embedded in the dam near the right abutment. The powerhouse is on the right downstream toe of the dam adjacent to the spillway apron. The powerhouse houses three 16,667-kW, vertical-shaft generators driven by 23,500-horsepower turbines. (http://www.usbr.gov/projects/Facility.jsp?fac_Name=Canyon +Ferry+Dam&groupName=Overview)

Canyon Ferry provides for flood control, generation, and irrigation. The Helena Valley Pumping Plant diverts water into a conveyance system which provides irrigation to the Helena Valley and the City of Helena/Helena Lake consumptive uses. Water is generally discharged into groundwater or surface water which rejoins the Missouri River at or above the Hauser Reservoir.

Operated by the USBR, Canyon Ferry provides the usable storage for providing continuous flows in the Missouri River from Lake Hauser down to the Morony tailrace. Coordinating agreements exist to provide for a consistent flow from Holter Reservoir, and NorthWestern Energy is responsible for meeting flow requirements from below Holter to the USGS gage 06090300 below Morony Dam, following the operational requirements outlined in the Canyon Ferry Operating Criteria ("*Operating Guidelines PPL & BOR Agrmt.pdf*").

2.4 Hauser Development (FERC Project No. 2188)

Hauser Dam is located near Helena, Montana, on the Missouri River approximately 15 river miles downstream from Canyon Ferry Dam and impounds approximately 11,060 acre-feet of water storage, consisting of Hauser Reservoir and Helena Lake.³ The Hauser Development includes a powerhouse with six turbine-generator units with a maximum capacity of approximately 16.8 MW (*Hydro Capacity-Limits Rev 9.xlsx*). Hauser is operated as a base load, run-of-river generating facility, with releases providing flow to the downstream hydroelectric developments, following the operational requirements (*NWEhydrooperationsplan.docx*):

- Operate the Hauser Dam as a base load, run-of-river project (i.e., the dam shall not be used for peaking, load following, or providing non-spinning operating reserves).
- Maintain the elevation of Hauser Reservoir and Lake Helena between 3,634.4 and 3,635.4 feet (normal full pool) and maintain continuous, stable flows in the Missouri River immediately below Hauser Dam.
- Limit to 10 percent, the difference between the daily average flow measured just below Hauser Dam (at a USGS gauging station to be installed) and the daily average inflow to Hauser Reservoir and Lake Helena. For this purpose, the inflow to Hauser Reservoir and Lake Helena shall be calculated based on the measured flow below Hauser Dam and the change in storage content of Hauser Reservoir and Lake Helena.
- Limit the difference between the highest hourly average flow and the lowest hourly average flow (as measured at the USGS gauging station to be installed) on any day to no more than the sum of (a) 10 percent of the previous day's average flow at the gauging station and (b) any increase or decrease in releases from Canyon Ferry Dam occurring on the day in question or on the day immediately preceding or the day immediately following the day in question.
- Limit changes in the hourly average flow measured at the gauging station to be installed to no more than 5 percent of the previous hour's average flow.

³ Federal Energy Regulatory Commission (FERC). 2000. Missouri-Madison Hydroelectric Project, FERC No. 2188, Order Issuing New License. September 2000.

- Enhance downstream power production, as required by the Missouri River Coordination Agreement, if extreme drought conditions persist for an extended period. The maximum required draft for this purpose is to elevation 3,621 feet. Drafting Hauser Reservoir and Lake Helena for this purpose is only required after all of the storage in Canyon Ferry Reservoir and Hebgen Reservoir has been utilized.
- Implement Article 420 Flow Restoration Plan (restore full river flow within 30 minutes after a full plant trip).
- Implement Article 415 Flow Window Excursion Plan (annual report to MDFWP, U.S. Fish and Wildlife Service [USFWS], and FERC on all flow excursion events, causes, and corrective actions).

For modeling purposes:

• Since CHEOPS does not model plant outage due to tripping, the Flow Restoration Plan is not modeled.

2.5 Holter Development (FERC Project No. 2188)

Holter Dam is located near Wolf Creek, Montana, on the Missouri River approximately 26 river miles downstream from Hauser Dam and impounds approximately 240,000 acre-feet of water storage, consisting of Holter Lake.⁴ The Holter Development includes a powerhouse with four turbine-generator units with a maximum capacity of approximately 48 MW (*Hydro Capacity-Limits Rev 9.xlsx*). Holter is operated as a base load, run-of-river generating facility, with releases providing flow to the downstream hydroelectric developments, following the operational requirements (*NWEhydrooperationsplan.docx*):

• Operate Holter Dam as a base load, run-of-river project (i.e., the dam shall not be used for peaking, load following, or providing non-spinning operating reserves).

⁴ Federal Energy Regulatory Commission (FERC). 2000. Missouri-Madison Hydroelectric Project, FERC No. 2188, Order Issuing New License. September 2000.

- Maintain the elevation of Holter Reservoir between 3,563 and 3,564 feet (normal full pool) and maintain continuous, stable flows in the Missouri River immediately below the Holter Development.
- Limit to no more than 10 percent the difference between the daily average flow measured just below Holter Dam (USGS gage 06066500) and the daily average inflow to Holter Reservoir. For this purpose, the inflow to Holter Reservoir shall be calculated based on the measured flow at USGS gage 06066500 and the change in storage content of Holter Reservoir.
- Limit the difference between the highest hourly average flow and the lowest hourly average flow (as measured at USGS gage 06066500) on any day to no more than the sum of (a) 10 percent of the previous day's average flow at USGS gage 06065500 and (b) any increase or decrease in releases from Canyon Ferry Dam occurring on the day in question or on the day immediately preceding or immediately following the day in question.
- Limit changes in the hourly average flow measured at USGS gage 06065500 to no more than 5 percent of the previous hour's average flow.
- Implement Article 420 Flow Restoration Plan (restore full river flow within 30 minutes after a full plant trip).
- Implement Article 415 Flow Window Excursion Plan (annual report to MDFWP, USFWS, and FERC on all flow excursion events, causes, and corrective actions).
- May temporarily (for a period of a few to several days) increase flows from the Holter Development during and immediately preceding periods of extreme cold to maintain or enhance power production at the Great Falls Developments (Black Eagle, Rainbow, Cochrane, Ryan, and Morony) downstream. The Licensee shall endeavor to minimize the reservoir drafts and downstream flow fluctuations caused by this type of operation by coordinating the increased flows from the Holter Development with increased flows from the Canyon Ferry Project:

STANDARD OPERATING PLAN (SOP) EMERGENCY WINTER FLOWS BELOW HOLTER DAM

- Initiate request for emergency winter flows when weather forecast for Great Falls consistently (at least 2-3 days in a row) predicts 3 or more consecutive days with below-zero daily minimum temperatures.
- Peak flow condition can be maintained for several days if necessary until conditions indicate river flow is returning to pre-event levels.
- Avoid emergency winter flow requests during trout spawning season in November and March unless absolutely necessary. If special releases are needed during this period, attempt to minimize the amount of flow change.
- Monitor weather forecasts for Great Falls twice daily (morning and late afternoon) during the planning stage and make flow requests at the last possible moment while being sure adequate time is allocated for required internal and external communication.
- Make every reasonable effort to cancel or reduce the flow request if forecasts change or extreme cold weather abates.

For modeling purposes:

- The SOP emergency winter flows are not included in the definition of the Base Case scenario.
- Since CHEOPS does not model plant outage due to tripping, the Flow Restoration Plan is not modeled.

2.6 Black Eagle Development (FERC Project No. 2188)

Black Eagle Dam is located near Great Falls, Montana, on the Missouri River approximately 93 river miles downstream from Holter Dam and impounds approximately 1,820 acre-feet of water storage.⁵ The Black Eagle Development includes a powerhouse with three turbine-generator units with a maximum capacity of approximately 27.9 MW (*Hydro Capacity-Limits Rev 9.xlsx*). Black Eagle is operated as a generating facility, with releases providing flow to the downstream

⁵ Federal Energy Regulatory Commission (FERC). 2000. Missouri-Madison Hydroelectric Project, FERC No. 2188, Order Issuing New License. September 2000.

hydroelectric developments, following the operational requirements (*NWEhydrooperationsplan.docx*):

- Operate Black Eagle Dam as a base load, run-of-river project.
- Maintain the elevation of Black Eagle Reservoir near its normal full pool elevation of 3,290 feet.
- Spill a minimum of 200 cfs at Black Eagle Dam between the hours of 9:00 a.m. and 8:00 p.m. on weekends and holidays during the summer, beginning with the Memorial Day weekend and ending with the Labor Day weekend (except during years when the April–June natural runoff into Canyon Ferry Reservoir is less than 900,000 acre-feet [50 percent of the 1961–1990 average]).
- Implement Article 403 Black Eagle Drawdown Plan (specific drawdown rates to limit reservoir sediment re-suspension and downstream transport).
- May increase generation above the normal run-of-river level for up to four hours to provide short-term generation reserves.

For modeling purposes:

- Based on discussions with NorthWestern Energy operations staff, the 200 cfs minimum spill flow is actually performed regardless of the Canyon Ferry runoff. This is likewise simulated as a requirement, regardless of the runoff, in the Base Case scenario.
- The four hours of available short-term generation reserves are not included in the definition of the Base Case scenario; this will be evaluated in future analyses.

2.7 Rainbow Development (FERC Project No. 2188)

Rainbow Dam is located near Great Falls, Montana, on the Missouri River approximately 3 river miles downstream from Black Eagle Dam and impounds approximately 1,237 acre-feet of water storage.⁶ The Rainbow Project was re-developed in 2013 and includes a new powerhouse with one turbine-generator unit with a maximum capacity of approximately 62 MW (*Hydro Capacity*-

⁶ Federal Energy Regulatory Commission (FERC). 2000. Missouri-Madison Hydroelectric Project, FERC No. 2188, Order Issuing New License. September 2000.

Limits Rev 9.xlsx). The original Rainbow powerhouse has been abandoned. Rainbow is operated as a generating facility, with releases providing flow to the downstream hydroelectric developments, following the operational requirements (*NWEhydrooperationsplan.docx*):

- Operate Rainbow Dam as a base load, run-of-river project.
- Maintain the elevation of Rainbow Reservoir near its normal full pool elevation of 3,224 feet.
- Spill a minimum of 200 cfs at Rainbow Dam between the hours of 9:00 a.m. and 8:00 p.m. on weekends and holidays during the summer, beginning with the Memorial Day weekend and ending with the Labor Day weekend (except during years when the April–June natural runoff into Canyon Ferry Reservoir is less than 900,000 acre-feet [50 percent of the 1961–1990 average]).
- Implement Article 403 Rainbow Drawdown Plan (specific drawdown rates to limit reservoir sediment re-suspension and downstream transport).
- May increase generation above the normal run-of-river level for up to four hours to provide short-term generation reserves.

For modeling purposes:

- Based on discussions with NorthWestern Energy operations staff, the 200 cfs minimum spill flow is actually performed regardless of the Canyon Ferry runoff. This is likewise simulated as a requirement, regardless of the runoff, in the Base Case scenario.
- The four hours of available short-term generation reserves are not included in the definition of the Base Case scenario; this will be evaluated in future analyses.

2.8 Cochrane Development (FERC Project No. 2188)

Cochrane Dam is located near Great Falls, Montana, on the Missouri River approximately 3 river miles downstream from Rainbow Dam and impounds approximately 8,464 acre-feet of water storage.⁷ The Cochrane Development includes a powerhouse with two turbine-generator units with a maximum capacity of approximately 71 MW (*Hydro Capacity-Limits Rev 9.xlsx*). Cochrane is operated as a generating facility, with releases providing flow to the downstream hydroelectric developments, following the operational requirements (*NWEhydrooperationsplan.docx*):

- At its discretion, operate the Cochrane Development to provide base load generation, short-term generation reserves, load-following generation, and, on a coordinated basis with the Ryan and Morony Developments, peaking generation.
- During base load operation, maintain the elevation of Cochrane Reservoir near its normal full pool elevation (currently 3,116.5 feet and proposed 3,120 feet).
- During operations other than base load, maintain the elevation of Cochrane Reservoir between 3,105 and 3,116.5 feet until the Rainbow Development has been modified and between 3,110 and 3,120 feet thereafter.
- Implement Article 403 Cochrane Drawdown Plan (specific drawdown rates to limit reservoir sediment re-suspension and downstream transport).

For modeling purposes:

• The capability of peaking operations and generation reserves are not included in the definition of the Base Case scenario; this will be evaluated in future analyses.

⁷ Federal Energy Regulatory Commission (FERC). 2000. Missouri-Madison Hydroelectric Project, FERC No. 2188, Order Issuing New License. September 2000.

2.9 Ryan Development (FERC Project No. 2188)

Ryan Dam is located near Great Falls, Montana, on the Missouri River approximately 2 river miles downstream from Cochrane Dam and impounds approximately 3,653 acre-feet of water storage.⁸ The Ryan Development includes a powerhouse with six turbine-generator units with a maximum capacity of approximately 64.8 MW (*Hydro Capacity-Limits Rev 9.xlsx*). Ryan is operated as a generating facility, with releases providing flow to the downstream hydroelectric developments, following the operational requirements (*NWEhydrooperationsplan.docx*):

- At its discretion, operate the Ryan Development to provide base load generation, shortterm generation reserves, load-following generation, and, on a coordinated basis with the Cochrane and Morony Developments, peaking generation.
- During base load and other operations, maintain the elevation of Ryan Reservoir near its normal full pool elevation of 3,037 feet by coordinating operations with the Cochrane Development.
- Spill a minimum of 200 cfs at Ryan Dam between the hours of 9:00 a.m. and 8:00 p.m. on weekends and holidays during the summer, beginning with the Memorial Day weekend and ending with the Labor Day weekend (except during years when the April–June natural runoff into Canyon Ferry Reservoir is less than 900,000 acre-feet [50 percent of the 1961–1990 average]).
- Implement Article 403 Ryan Drawdown Plan (specific drawdown rates to limit reservoir sediment re-suspension and downstream transport).

For modeling purposes:

• Based on discussions with NorthWestern Energy operations staff, the 200 cfs minimum spill flow is actually performed regardless of the Canyon Ferry runoff. This is likewise simulated as a requirement, regardless of the runoff, in the Base Case scenario.

⁸ Federal Energy Regulatory Commission (FERC). 2000. Missouri-Madison Hydroelectric Project, FERC No. 2188, Order Issuing New License. September 2000.

• The capability of peaking operations and generation reserves are not included in the definition of the Base Case scenario; this will be evaluated in future analyses.

2.10 Morony Development (FERC Project No. 2188)

Morony Dam is located near Great Falls, Montana, on the Missouri River approximately 4 river miles downstream from Ryan Dam and impounds approximately 13,889 acre-feet of water storage.⁹ The Morony Development includes a powerhouse with two turbine-generator units with a maximum capacity of approximately 49 MW (*Hydro Capacity-Limits Rev 9.xlsx*). Morony is operated as a re-regulating generating facility, following the operational requirements (*NWEhydrooperationsplan.docx*):

- Operate the Morony Development as a base load project with outflows approximately equal to inflows into the Great Falls developments upstream.
- Do not operate the Morony Development for peaking, load following, or providing nonspinning operating reserves.
- Use the Morony Development to re-regulate releases from the Cochrane and Ryan Developments when they are operated to provide short-term reserve generation, load-following generation, or peaking generation.
- During base load operations at the Ryan and Cochrane developments, maintain the elevation of Morony Reservoir between 2,885 and 2,888 feet.
- During Ryan and Cochrane operations other than base load, maintain the elevation of Morony Reservoir between 2,878 and 2,888 feet.
- Limit to 10 percent, the difference between the daily average flow measured just below Morony Dam (at USGS gage 06090300) and the daily average inflow to the Great Falls Developments. For this purpose, the inflow to the Great Falls Developments shall be calculated based on the measured flow at USGS gage 06090300 and the change in storage content of Black Eagle, Rainbow, Cochrane, Ryan, and Morony Reservoirs.

⁹ Federal Energy Regulatory Commission (FERC). 2000. Missouri-Madison Hydroelectric Project, FERC No. 2188, Order Issuing New License. September 2000.

- Limit the difference between the highest hourly average flow and the lowest hourly average flow (as measured at USGS Gage No. 6 903) on any day to no more than the sum of (a) 15 percent of the previous day's average flow at USGS gage 06090300 and (b) the greater of the sum of the differences between the highest hourly average flow and the lowest hourly average flow measured as inflows to Black Eagle on the day in question or the day preceding the day in question.
- Limit changes in the hourly average flow measured at USGS gage 06090300 to no more than 7.5 percent from the previous hour's average flow.
- Implement Article 403 Morony Drawdown Plan (specific drawdown rates to limit reservoir sediment re-suspension and downstream transport).

2.11 Thompson Falls Development (FERC No. 1869)

Thompson Falls Dam is located on the Clark Fork River in Thompson Falls, Montana, and impounds approximately 15,733 acre-feet of water storage (*RESERVOIR-CAPACITY.xls*). Thompson Falls Development includes two powerhouses. One powerhouse has 6 turbine-generator units with a maximum capacity of 39.2 MW (*Hydro Capacity-Limits Rev 9.xlsx*), and the second powerhouse has a single turbine-generator unit with a maximum capacity of approximately 59 MW (*Hydro Capacity-Limits Rev 9.xlsx*). Thompson Falls is operated as a generating facility, following the operational requirements (*NWEhydrooperationsplan.docx*):

- At its discretion, operate the Thompson Falls Development to provide base load generation, generation reserves, or load-following generation.
- Maintain the elevation of Thompson Falls Reservoir between 2,396.5 and 2,392.5 feet.
- Release a continuous instantaneous minimum flow of 6,000 cfs, or river inflow, whichever is less, below the Thompson Falls Project.
- Release the USFWS and FERC-approved Thompson Falls Fish Ladder flows from mid-March to late October depending on weather (flows cease when freeze conditions are imminent).

For modeling purposes:

 Based on discussions with NorthWestern Energy operations staff, fish ladder flows of typically 80 cfs from mid-March through late October are released. Supplemental attraction flows are sometimes released through spillway gates for test purposes but have not been standardized. The Base Case scenario is configured to release 80 cfs from March 15 through October 25 annually. Other options are available as sensitivity analyses.

2.12 Mystic Lake Development (FERC No. 2301)

Mystic Lake Dam is located on the West Rosebud Creek near Roscoe, Montana, and impounds approximately 20,997 acre-feet of water storage (*RESERVOIR-CAPACITY.xls*). Mystic Lake Development includes a powerhouse with two turbine-generator units with a maximum capacity of approximately 12 MW (*Hydro Capacity-Limits Rev 9.xlsx*). Mystic Lake is operated as a storage and generating facility, following the operational requirements (*NWEhydrooperationsplan.docx*):

- At its discretion, operate the Mystic Lake Development to provide base load generation, generation reserves, or load-following generation.
- Maintain a minimum water surface elevation at Mystic Lake of 7,663.5 feet from July 10 to September 15 each year.
- Provide for a minimum flow release of 20 cfs, unless inflow is less or maintenance prevents the release, downstream as measured at the USGS gage 06204070.
- Provide continuous minimum flows and ramping rates on West Rosebud Creek as follows:
 - During fall, winter, and spring months (September through May) the Licensee shall provide a minimum bypass reach flow of 5 cfs with the option to provide up to 11 days (selected at Licensee's discretion) each month of 4 cfs as measured at the upper weir, located upstream of the return flow from the powerhouse. Any release of 4 cfs, even if less than a full 24 hour period, shall count toward the 11-day-per-month maximum.

- During summer months (June through August) the Licensee shall provide a minimum bypass reach flow of 10 cfs as measured at the upper weir.
- During the entire year, the Licensee shall ramp descending bypass reach flows below 10 cfs at 2 cfs per hour maximum, as measured at the upper weir. No ramp rate limits are required at flows above 10 cfs.

For modeling purposes:

- The bypass flow ramping rate restrictions are not simulated in the model. If desired, the bypass flow ramping rate functionality could be added to the model with additional custom coding.
- Bypass flows of 5 cfs from September through May and 10 cfs at all other times are simulated in the definition of the Base Case scenario. Lower flow excursions and bypass flow ramping rates are not simulated in the definition of the Base Case scenario.

2.13 West Rosebud Lake Development (FERC No. 2301)

West Rosebud Lake Dam is located on the West Rosebud Creek near Roscoe, Montana, approximately 13 river miles downstream of Mystic Lake Dam and impounds approximately 389 acre-feet of water storage (*RESERVOIR-CAPACITY.xls*). West Rosebud Lake is operated as a storage facility, following the operational requirements (*NWEhydrooperationsplan.docx*):

- Provide for a minimum flow release of 75 cfs (SOP) from October 1 through November 30, 43 cfs (SOP) from December 1 through April 15, at all other times 20 cfs (401 Water Quality Certification) except when natural inflow is less than 20 cfs or when maintenance of facilities prevents such a release, as measured at the USGS gage 06204070.
- Under normal, routine operation of the Mystic Lake Hydroelectric Project by Licensee during the descending limb of the West Rosebud Creek annual hydrograph, provide for West Rosebud Creek Whitewater Flow Enhancement.
 - When the Wednesday noon stream flow reported at the USGS gage 06204050 is greater than 400 cfs, no whitewater flow enhancement will be provided.

- When the Wednesday noon stream flow reported on the USGS gage 06204050 is between 286 cfs and 400 cfs, Licensee will endeavor to release 500 cfs for 5 hours from the West Rosebud Lake Dam on the following Saturday and Sunday, except:
 - When the following Friday noon stream flow reported on the USGS gage 06204050 is less than 270 cfs due to rapidly decreasing inflow, Licensee will endeavor to release 500 cfs for 5 hours from the West Rosebud Lake Dam on the following Saturday only.
- When the Wednesday noon stream flow reported on the USGS gage 06204050 is between 250 cfs and 285 cfs, Licensee will endeavor to release 500 cfs for 5 hours from the West Rosebud Lake Dam on the following Saturday only, except:
 - When the following Friday noon stream flow reported on the USGS gage 06204050 is less than 250 cfs due to rapidly decreasing inflow, a Saturday release will not be provided.
- When the Wednesday noon stream flow reported on the USGS gage 06204050 is less than 250 cfs, no whitewater flow enhancement will be provided.
- Licensee will endeavor to operate West Rosebud Lake below 6,397.6 feet and above 6,395.0 feet elevation during whitewater flow enhancement events.
- Minimum flow below West Rosebud Lake during whitewater flow enhancements will be maintained at 200 cfs or greater as measured at the USGS gage 06204070.
- Whitewater releases from West Rosebud Lake Dam will begin at 8:30 a.m. Peak flow (near 500 cfs) will reach the Emerald Lake Outlet between approximately 11:00 a.m. and 12:00 noon and will continue for approximately 2.5 hours, gradually reducing to pre-enhanced base flow conditions thereafter.
- When the Wednesday noon stream flow reported on the USGS gage 06204050 indicates a pending whitewater flow enhancement on the following weekend, Beartooth Paddlers and American Whitewater will endeavor to communicate this information to the paddling community through social media, websites, email, and other means.
- Rapidly decreasing flows as reported on the USGS gage 06204050 can, on rare occasions, cause whitewater flow enhancements to be less than optimal on the first

and second day of a 2-day flow enhancement, when releases of 500 cfs for less than a 5-hour duration from West Rosebud Lake Dam occur.

2.14 Hydrology

The objective for the hydrology task was to compute mean daily synthesized inflow to each node or calculation point within the NWE CHEOPS Model. The purpose of developing synthesized flow data is to characterize historical stream flows that would have occurred with no influence from the NWE CHEOPS Model nodes.

The development of synthesized inflow began with a compilation of the available USGS gages in the vicinity of each computation point and to prorate drainage areas to the area of interest. Proration requires at least one reference gage with reliable data of sufficient duration and a hydrology that is reasonably similar to the hydrology of the basin/streamreach of interest. The reference location(s) should be similar in basin characteristics to the basin of interest, it should have good streamflow data for a sufficiently long period of record, and if possible, be unimpaired or minimally impaired by reservoirs to reduce cumulative errors associated with gage summations. If the flow data for the reference watershed is reasonably accurate, then the proration method is very effective when applied to watersheds with similar physical characteristics (e.g., climate, topography, elevation, geology). However, as the physical characteristics of the watershed of interest deviate from that of the reference watershed, the prorated unimpaired flow data will include deviations that are related to the degree of differences in watershed characteristics. For this reason, gages within each basin of interest were selected and storage operations were backed out of the gage records.

The synthesized flow data was estimated using a combination of proration, summation, and adjusted data to smooth the random fluctuations and to correct negative flow values. The proration method estimates flows for a region of interest by utilizing one or more reference basins with available representative data. The proration method gives an estimate of flows for a given watershed of interest by scaling the reference basin as follows:

$$Q_{target} = \left(\frac{A_{target}}{A_{reference}}\right)Q_{reference}$$

Where: Q_{target} is the flow (cfs) for the basin of interest,

Q_{reference} is the flow (cfs) for the reference basin,

A_{target} is the drainage area (square miles) for the basin of interest,

A_{reference} is the drainage area (square miles) for the reference basin.

For reservoirs, the "summation method" incorporates the determination of inflows using the hydrologic water budget equation:

$$Qi = Qo + \Delta S + losses$$

where the inflow (Qi) equals outflow (Qo) plus the change in storage (Δ S) plus losses (evaporation and water withdrawals). Inaccuracies were found in some of the reservoir storage and discharge data, manifested as negative inflows, as well as random fluctuations in the synthesized flow data. Minor deviations in reservoir elevation readings can result in significant changes in volume. Therefore, the daily reservoir elevation records were smoothed using a weekly rolling average elevation. Figure 2-1 is an example of the effects of the smoothing.

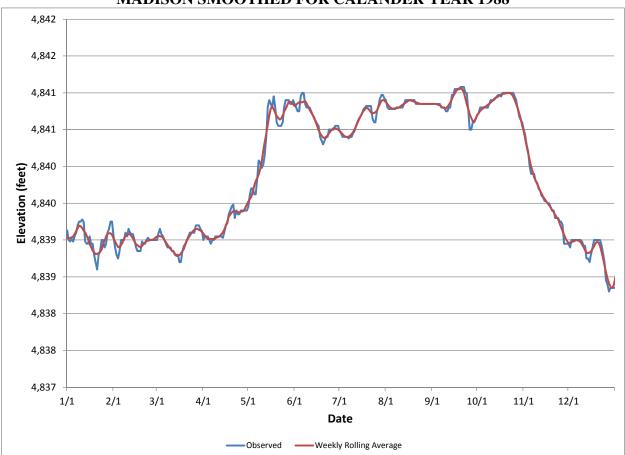


FIGURE 2-1 MADISON SMOOTHED FOR CALANDER YEAR 1988

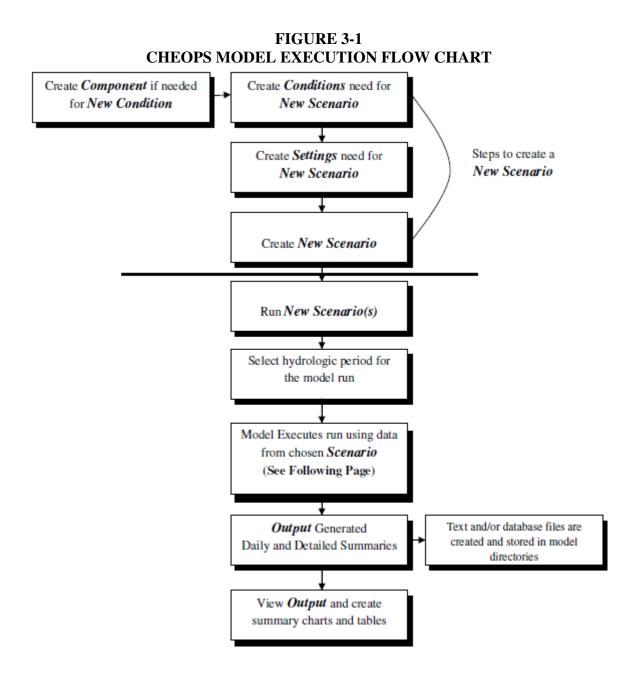
It has been assumed that historical water use (withdrawals/returns) and evaporation are representative for alternative analyses and have not been removed from the USGS gage records, and, therefore, are accounted for in this synthesized hydrology dataset. Hydrology for the NWE CHEOPS Model was synthesized using the following reference gages and logic:

- Hebgen USGS gage 06038500 (at outlet of Hebgen development with records rated as "excellent" by the USGS) daily average flow with Hebgen weekly rolling average storage operations backed out. Negative inflows removed by averaging adjacent daily inflows, overall inflow volume unadjusted.
- *Kirby Ranch and Madison* USGS gage 06041000 (at outlet of Madison Development with records rated as "good" by the USGS) daily average flow minus the daily average flow for USGS gage 06038500 (at outlet of Hebgen Development), Madison weekly

rolling average storage operations backed out, and then prorated to each incremental drainage area of interest by direct drainage area proration. Negative inflows removed by averaging adjacent daily inflows, overall inflow volume unadjusted.

- *Canyon Ferry, Hauser and Holter* USGS gage 06066500 (at outlet of Holter Development with records rated as "good" by the USGS) daily average flow minus daily average flow for USGS gage 06041000 (at outlet of Madison Development) delayed by one day; Holter, Hauser, and Canyon Ferry weekly rolling average storage operations backed out; and then prorated to each incremental drainage area by direct drainage area proration. Unadjusted for negative inflows due to high water use and evaporative losses.
- Black Eagle USGS gage 06078200 (upstream of Black Eagle Development with records rated as "good" by the USGS) daily average flow minus daily average flow for USGS gage 06066500 (at outlet of Holter Development) delayed by one day, and then summed with USGS gage 06090300 (at outlet of Morony Development with records rated as "good" by the USGS) daily average flow minus daily average flow for USGS gage 06078200 (upstream of Black Eagle Development); Morony, Ryan, Cochrane, Rainbow, and Black Eagle weekly rolling average storage operations backed out; and then daily average flows prorated to each incremental drainage area between USGS gage 06078200 (upstream of Black Eagle Daw by direct drainage area proration. Periods of missing data for USGS gage 06078200 (upstream of Black Eagle Development) filled in by direct drainage area proration of USGS gage 06090300 (at outlet of Morony Development with records rated as "good" by the USGS) daily average flows. Negative inflows removed by averaging adjacent daily inflows, overall inflow volume unadjusted.
- Rainbow, Cochrane, Ryan, and Morony USGS gage 06090300 (at outlet of Morony Development with records rated as "good" by the USGS) daily average flow minus daily average flow for USGS gage 06078200 (upstream of Black Eagle Development); Morony, Ryan, Cochrane, Rainbow, and Black Eagle weekly rolling average storage operations backed out; and then daily average flows prorated to each incremental drainage area by direct drainage area proration. Negative inflows removed by averaging adjacent daily inflows, overall inflow volume unadjusted.

- Mystic Lake, Mystic Bypass Reach, West Rosebud Lake USGS gage 06204050 (at outlet of Mystic Lake Development with records rated as "good" by the USGS) daily average flow with Mystic Lake weekly rolling average storage operations backed out, and then prorated to the incremental drainage area by direct drainage area proration. Negative inflows removed by averaging adjacent daily inflows, overall inflow volume unadjusted.
- Thompson Falls USGS gage 12389500 (upstream of Thompson Falls Development on the tributary to the Clark Fork River, Thompson River with records rated as "good" by the USGS) daily average flows prorated to the incremental drainage area between Thompson Falls Dam and USGS gage 12389000, and then added to the USGS gage 12389000 (upstream of Thompson Falls Development with records rated as "good" by the USGS) daily average flows.


The historical period of record (POR) used to synthesize the flow data is from January 1, 1988 through November 30, 2014. This period is the longest period of available daily data for all the necessary reservoir and stream flow points simulated in the NWE CHEOPS Model. This study period includes representative wet, dry, and normal periods, as shown in the representative table for Hebgen (Table 2-3). The synthesized hydrology was simulated through the NWE CHEOPS Model for the POR to confirm that the hydrology compared favorably against both USGS gages records (for the closest available gage) and historical NorthWestern Energy operational data; these comparisons are presented in Appendix A.

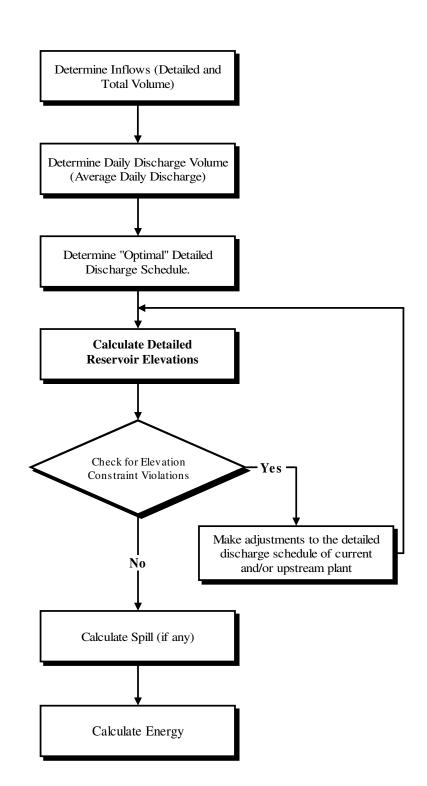

TADLE 2-5							
RANKED HEBGEN ANNUAL AVERAGE FLOW (CFS)							
Calendar Flow Calendar Flow				Calendar	Flow		
Year	(cfs)	Year	(cfs)	Year	(cfs)		
2007	779	1994	884	2000	1,086		
1988	807	1990	921	2012	1,093		
2001	829	2005	942	1993	1,193		
2004	842	1991	981	2011	1,231		
2003	850	1989	1,006	1995	1,239		
2013	854	2014	1,014	1998	1,328		
2002	859	2009	1,014	1999	1,383		
2010	868	2008	1,028	1996	1,419		
1992	878	2006	1,054	1997	1,596		

TABLE 2-3

3.1 Logic

Figures 3-1 and 3-2 give an overview of the model logic in sequence.

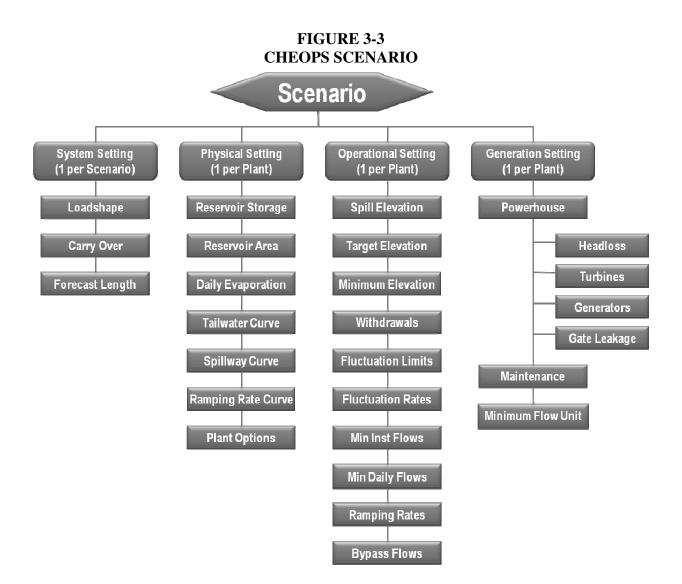


FIGURE 3-2 CHEOPS SCHEDULING FLOW CHART

32 2015 ERPP Volume 2, Chapter 5 Page 37 of 192

3.2 Input Data

The project data listed in the following subsections shows the general operational constraints and physical parameters used in the NWE CHEOPS Model to define the existing configuration used in both the Verification and the Base Case scenario setups. The following sections are organized following the four components that define a CHEOPS scenario, as shown in Figure 3-3. Each component of the Base Case scenario for each development is outlined in detail in Appendix B.

3.2.1 System Data

3.2.1.1 Loadshapes and Energy Values

This section contains the loadshape and energy value data common to all of the developments within the NWE CHEOPS Model. The CHEOPS loadshape defines the daily schedule of relative power pricing and the hour durations of each price in the peak, off-peak, and shoulder periods. The model uses the loadshape data to schedule the release of water throughout the day, prioritizing generation during peak periods. The Verification and Base Case scenarios are simulated with a generic loadshape with 16 hours of peak each day.

3.2.1.2 Carry-Over Elevations Condition

The Carry-Over Elevations Condition controls how to treat the beginning- and end-of-year elevations. The model begins the run on January 1 of the start year with each reservoir at its target elevation. If the scenario is run for a multiple-year period, then the model can either start subsequent years with the reservoirs at the target elevations or at the end-of-previous-year elevations.

The Carry-Over Elevations is selected (the checkbox is checked) in the Base Case scenario. Therefore, the model will carry-over the end-of-year elevations to the next year, and reservoirs will start the next year at the ending elevations of the previous year.

3.2.1.3 Forecast Set-Up Condition

The Forecast Set-Up Condition requires two inputs: a number of forecast days and an accuracy of the forecast. The number of days is how many days the model looks ahead in the inflow file to calculate how much water is going to be received. The Base Case scenario is set up to look 1 day ahead with 100 percent accuracy. Since the model has "perfect" forecasting as it looks at the actual inflow file, the accuracy setting allows the user to adjust the model's ability to forecast accurately. The accuracy setting adjusts inflow by a fixed multiple. The model looks ahead the given number of days, adds up the inflows, multiplies those inflows by the entered accuracy

value, then schedules releases based on this forecasted inflow volume. If the accuracy setting is not 100 percent (1), then the forecasted volume is not accurate. By running the model with 90 percent (.9) accuracy, and then running again at 110 percent (1.1) accuracy, the user can simulate operations where the operator has an ability to forecast inflows plus or minus 10 percent.

3.2.1.4 Metering Loss

Metering loss is a percent reduction to the gross generation calculated by the model. This value, entered as a whole number, accounts for line loss and transformer loss between the generator leads and the revenue meter. Additionally, station service and a general reduction for unscheduled outage factor can be included for the model to output a generation value net of losses, outages, and station service. There is a 0.32 percent metering loss included in the Base Case scenario ("Aux Loads" tab of "Generator info – JCummings.xlsx").

3.2.2 Physical Data

3.2.2.1 Reservoir Storage Curves

The Reservoir Storage Curve is a tabulated link between the reservoir elevation and reservoir volume. The elevations are in units of "feet" and the volumes are in "acre-feet." The model uses this curve to calculate elevations based on inflows and model-determined releases.

3.2.2.2 Reservoir Area Curves

The Reservoir Area Curve is a tabulated link between the reservoir elevation and reservoir surface area. The elevations are in units of "feet" and the areas are in "acres." The model uses this curve to calculate the surface area and uses this data for computing evaporation losses. However, for the Base Case and Verification scenarios the reservoir area curves are not entered as the evaporation is included in the synthesized hydrology and, therefore, not simulated; if desired, this could be broken out of the hydrology for future analyses.

3.2.2.3 Monthly Evaporation

Evaporation is based upon a monthly varying coefficient that measures the evaporative loss per reservoir. This evaporative loss is not strictly composed of losses due to evaporation, but rather a net change to inflows due to evaporation, direct precipitation to water surface, precipitation runoff, and changes to evapotranspiration losses. Evaporation is accounted for in the hydrology data set and not entered into the model using this input condition.

3.2.2.4 Tailwater Data

The Tailwater Curve relates the powerhouse tailwater elevation to the developments' outflow. In cases where the powerhouse releases directly into a downstream reservoir, the downstream reservoir's elevation is used to compute tailwater elevation. The elevation is in units of "feet" while the flow is in cubic feet per second, or "cfs." The tailwater elevation is subtracted from the reservoir elevation to calculate the gross head used in determining powerhouse output.

3.2.2.5 Spillway Capacity

The Spillway Curve contains the data relating reservoir elevation (feet) and spillway discharge capacity (cfs). This data allows the model to determine the maximum amount of water that can be spilled at the current reservoir elevation and is the sum of all spillway conveyances with gates open to maximum setting. The NWE CHEOPS Model allows for a simple spillway relationship of elevation and flow; therefore, all spillways, including gates, are modeled as a relationship of elevation and flow.

3.2.2.6 Plant Operation Type

The Plant Operation Type is how the CHEOPS model classifies and operates the plants. Four different components are used to describe the operation of the plants.

• Min Powerhouse Flow – All plants in this model have zero (0) value entered, as the turbine input curves define the lowest operating flow of the units.

- Plant Operation Type This is how the CHEOPS model classifies and operates the plant. There are seven plant operation types: Non-Generating, Strictly Peaking, Peaking with Ramp Rates, Re-Regulating, Fill and Spill, Run-of-River (Daily Average), and Run-of-River (Instantaneous).
 - A *Non-Generating Plant* is a plant that does not have a powerhouse but has the ability to control releases. (Hebgen and West Rosebud Lake)
 - A *Strictly Peaking Plant* is a plant that can instantaneously peak from no release to a maximum release. The model schedules powerhouse releases to generate as much as possible during the peak period, followed by secondary-peak, and then the off-peak periods. This plant type can be scheduled to have two peak periods in the day depending upon loadshape input. (Canyon Ferry, Thompson Falls, and Mystic. Black Eagle, Rainbow, Cochrane and Ryan peaking capability will be evaluated through a separate sensitivity analysis.)
 - A *Peaking with Ramp Rates Plant* prioritizes its release in the peak periods but it is constrained by ramping rates. This plant will not double peak but will ramp up to the high daily release, remain at constant release, and then ramp back down to the off-peak release. This type of plant can handle tailwater ramping rates based on stage (feet/time), flow (flow/time), or percent-change of flow (flow/time).
 - Note: This Plant Operation Type must be selected if the user is investigating ramping rates at a particular plant. It is not enough to simply enter in an assumed ramping rate. Both constraints (Plant Operating Type set to Peaking with Ramp Rates or Re-Regulating, and a Ramping Rate constraint imposed) must be entered for the ramping rates to be used.
 - A *Re-Regulating Plant* is scheduled for a constant release for the entire day, ramps to the next day's release, and releases constant flows again. This type of plant is usually found downstream from a peaking plant and is frequently the last plant in the system, with the goal of smoothing out peaked powerhouse flows. This Plant Operating Type can use ramping rates to determine how quickly the plant is allowed to change from one flow to another. If no ramping rate is specified, the plant will step from one day's daily average/continuous flow to the next day's flow. (Morony, Hauser, Holter,

Black Eagle, Rainbow, and Cochrane and Ryan when not in peaking evaluation. Hauser, Holter, Black Eagle, Rainbow, and Cochrane and Ryan are simulated as Re-Regulating plants versus daily average Run-of-River to allow for the implementation of the ramping rate restrictions on discharges)

- A *Fill and Spill Plant* is scheduled like a strictly peaking plant except that it is expected to spill. This type of plant is usually found downstream from a much larger plant with little intervening storage. The fill and spill plant turbine discharge capacity is usually undersized. Use of this plant type triggers the model to prioritize aggressive operation of the upstream plant rather than reschedule the high capacity plant to avoid spill at the downstream fill and spill plant.
- A *Pure Run-of-River (Daily Average) Plant* is a plant where inflows are generally equal to outflows on a daily average basis. The plant can use storage to maintain minimum instantaneous flows, and will increase reservoir elevation up to the spill elevation to minimize spill and use the volume for generation on subsequent days. (Madison)
- A *Pure Run-of-River (Instantaneous) Plant* releases its inflow on a 15-minute basis. This plant releases the maximum of its capacity or inflow and spills the excess.
- Delinked Owner Sets the level of water conveyance support a plant receives and provides to other plants operated by the same licensee/operator. All plants in the model have this value unchecked, meaning the plants provide supporting operation to other plants operated by the same owner.
- Delinked System Sets the level of support a plant receives and provides to other plants operated by other licensees/operators in the modeled system. Most plants in this model have this condition checked, meaning the default CHEOPS logic for support between plants is not in effect for plants operated by different operators. The plants are set up using different owners to organize the plants into common support groups. For example, Hebgen and Madison are set to have the same owner, meaning Hebgen will support Madison flow requirements and constraints. Canyon Ferry is set with a different owner number, thus "typical" CHEOPS support logic will not apply from Madison or Hebgen to Canyon Ferry. Other inputs are used to control how Madison supports Canyon Ferry

according to agreements. Hauser and Holter are set as a common owner, thus Hauser will support Holter to the extent possible given its own constraints and rules. Since Hebgen and Holter are in different owner groups, the typical support within the CHEOPS logic is not applicable between these plants.

3.2.3 Operational Data

3.2.3.1 Spill and Minimum Elevations

The Spill, or Flood Control, elevation relates to a variety of physical situations (spillway crest, partial gate coverage, maximum normal pool, etc.), but it represents the elevation at which the model will begin to simulate spill to avoid increasing water elevation. Under a strictly peaking plant, when the model calculates an end of period elevation above the Spill elevation, the model will calculate spill as well as the turbine/diversion discharge. The model's logic, under a strictly peaking plant, also attempts to reduce or eliminate occurrences when the reservoir elevation exceeds the spill elevation.

The Minimum elevation is the minimum allowable reservoir elevation and is the point at which discretionary discharges will be ceased. The elevation could be set by regulations or by a physical limit (lowest available outlet invert). Bypass flows, withdrawals, wicket gate leakage, and evaporation can draw the reservoir below this level. The model will operate to eliminate occurrences when the reservoir elevation dips below this elevation.

3.2.3.2 Target Elevations

The Target Elevation is the user-defined elevation that the model attempts to meet (targets) as the end-of-day reservoir elevation. The model straight line interpolates between user input points to identify a target elevation for each day. The model will deviate from the target to accommodate forecasted inflows, to meet the plant's own outflow requirements or constraints, and to support downstream minimum flow requirements and capacities.

3.2.3.3 Water Withdrawals

The Water Withdrawals allows the user to model water removal and return that represents consumptive uses and returns such as irrigation and municipal water supply. However, for the Base Case and Verification scenarios water withdrawals are not simulated as they are included in the synthesized hydrology (this assumes that historic water uses are representative); if desired, this could be broken out of the hydrology for future analyses.

3.2.3.4 Minimum Flows

Minimum flow requirements can be applied on either a daily average or instantaneous basis. Minimum Instantaneous Flows are flows that must be released either through the low-level outlet or through the powerhouse, 24 hours a day. The Minimum Daily Flows are defined as a daily average flow (cfs), that the plant must release for the day. The model will meet these requirements before scheduling any excess water. The user can also set these constraints with an Or Inflow option. The Or Inflow option sets the flow requirement equal to the lesser of the user-defined flow or the total inflow into the plant. The total inflow is the sum of the discharges from the upstream plant(s) plus the incremental accretion above this plant.

A minimum daily average flow requirement may not be discharged as a continuous flow throughout the day. Depending upon the plant type, the scheduling logic may discharge most or all of the water during peak demand periods at higher flow rates, but the daily average flow from the powerhouse will equal the specified flow requirement.

3.2.3.5 Maximum Flows

The model allows a Maximum Flow constraint to be applied to discretionary discharges from a plant. This will limit operations to restrict flow to a maximum of the defined limit. The Base Case scenario definition includes maximum flow limitations at Hebgen (measured at Kirby Ranch flow calculation location), Canyon Ferry, and Rainbow. For the Hebgen maximum flow requirement, the model automatically applies the incremental accretions between Hebgen and

Kirby Ranch, and sets Hebgen maximum outflow to be the difference between the user inputted value and the day's accretions at Kirby Ranch.

3.2.3.6 Recreation Flows

The Recreation Flows are used to input plant output requirements that change within a day, and vary from the standard requirement from the plant. This condition is being used in the Base Case scenario definition at Hebgen to account for the 600 cfs flow requirement at Kirby Ranch and the 200 cfs aesthetic flows at Black Eagle, Rainbow, and Ryan.

3.2.3.7 Bypass Flows

The Bypass Flows represents flows that are released through the dam, bypassing the powerhouse, and not available for generation. These requirements may include items such as bypass reach flows, upstream/downstream fish passage/attraction water, sluice gate discharges, and dam leakage. The user can define this constraint as Or Inflow. The Or Inflow option sets the bypass flow equal to the lesser of the user-defined flow or the inflow into the plant. The inflow is the sum of the upstream plant's release, bypass return flow, and the incremental accretion flows between the upstream plant and the current plant. Bypass flows can draw the reservoir below the minimum elevation. Bypass flows are simulated at Madison, Canyon Ferry (to account for water to Lake Helena), Thompson Falls, Mystic Lake, and West Rosebud Lake.

3.2.3.8 Flashboards

For the purposes of this analysis, all flashboards are being simulated in the spillway capacity curves.

3.2.4 Generation Data

All unit performance information was modeled based on the information available at the time of model development. The unit performance information in the Base Case scenario is based on the best available data for each powerhouse. In some instances the units are simulated with a total

unit performance, entered into the turbine input, based on gross head. All of the unit performance information included in the Verification and Base Case scenarios is outlined in Appendix B. The performance of each individual unit was calibrated based on the best available information for that unit, as outlined in the unit descriptions in Appendix B. Comparisons of the 15-minute model simulated, hourly historical PI, and historical daily power versus flow values for each powerhouse are presented in Appendix C.

3.2.4.1 Headloss Coefficients

The CHEOPS model allows two common headloss coefficients for each plant and an individual coefficient for each unit. Headloss for each unit is calculated by multiplying the unit's common coefficient by the total flow for that common coefficient squared added to the individual coefficient multiplied by the individual unit flow squared. The formula is:

$$H_i = \left(\sum_{j=1}^n F_j\right)^2 h_c + F_i^2 h_i$$

Where:

$$\begin{split} H_i \text{ is the unit headloss in feet} \\ h_c \text{ is the common coefficient for the i}^{th} \text{ unit} \\ h_i \text{ is the individual coefficient for the i}^{th} \text{ unit} \\ F_i \text{ is the flow for the i}^{th} \text{ unit} \\ j \text{ runs from 1 to n} \\ n \text{ is the number of units that have the same common coefficient as the unit i} \end{split}$$

1

3.2.4.2 Turbine Efficiency Curves

Turbine performance is entered by plant and as flow versus efficiency at five separate net heads.

3.2.4.3 Generator Efficiency Curve

The generator data, like the turbine data, is entered by plant and then associated with a unit. The generator performance data is a relationship of generator output versus generator efficiency.

The generator condition includes a maximum generator output. This value is the maximum generator output the model will allow, assuming there is turbine capacity to meet this limit. The model will limit generator output based on the generator maximum capacity setting.

3.2.4.4 Wicket Gate Leakage

The Wicket Gate Leakage flow is active only during times of non-generation. Thus, during periods of non-generation, this leakage flow is used to make up all or a portion of the minimum flow requirement. Current wicket gate leakage is not simulated in the NWE CHEOPS Model.

3.2.4.5 Powerhouse Weekend Operations

The Powerhouse Weekend Operations Condition permits the simulation of reduced powerhouse operations during Saturdays and/or Sundays. All bypass flow requirements are still met since bypass flows are not powerhouse dependent. Minimum instantaneous and minimum daily average flow requirements will be met by bringing the powerhouse online for the required flow only. This condition removes the "inflow plus change-in-storage" component from consideration in computing a desired daily discharge. During high inflow times with little usable storage, the model will bring the powerhouse online to generate with outflows, rather than permit spilling. There are no plants in the NWE CHEOPS Model which have sufficient storage and discretionary discharges to take advantage of this setting.

3.2.4.6 Plant Flow Type

The Plant Flow Type specifies that a powerhouse should operate the turbines at the peak efficiency discharge point rather than the maximum gate setting. For Run-of-River plant types, this setting is not utilized, as the plants will be set to Maximum Flow operating type. For other plant operation types, specify TRUE (checked box) if the plant should generally be scheduled to operate at the best efficiency point. Leaving the box unchecked will result in more detailed scheduled operations occurring at the maximum gate setting for the turbine units. This tends to result in slightly more peak period generation. For the Base Case scenario definition all of the

Run-of-River plants are set to Maximum Flow operating type. For peaking plants, except Canyon Ferry, all are set to run at maximum flow capacity if the hydrology allows.

3.2.4.7 Maintenance

The maintenance schedule provides the functionality to take one or more units out of service for all or part of each year for a scenario run. There are currently no outages in the Base Case scenario definition.

Section 4 Operations Model Calibration/Verification Process

Verification is intended to validate the NWE CHEOPS Model input data and logic so the "Base Case" scenario may be used as the baseline for all subsequent scenario analyses. HDR performed model verification using comparisons of actual and model estimated generation and discharge from each node. Verification of the model was completed using hydrology and operations for water year 2014 (10/1/2013 through 9/30/2014). Generation data is commonly available for hydropower developments and is a metered value that has good accuracy compared to other forms of data that are not metered or based on estimated values with lower accuracy.

Generation is a measure of available flow and storage volume, which relates to inflows and reservoir elevations. When performing verification of water quantity models with power generation, it is common to find discrepancies between observed data and modeled output for generation and reservoir elevation when looking at a small sample of time periods (day, week, or month). This is due to the difference between the set of rules provided in the model when compared to the day-to-day decisions common in large power developments that respond to power grid demands as well as storm forecasts and other non-measured impacts on the reservoir and equipment. Modeled results for each verification scenario were compared with historic generation, powerhouse flow, and reservoir levels. In addition to verifying the model under different hydrologic conditions, it was also important to select relatively recent years for model verification under conditions that are representative of current operating conditions.

As previously stated, the NWE CHEOPS Model is coded to run day-to-day operations based on general operating conditions or rules. The model follows these rules strictly, 24 hours per day and 365 days per year, similar to an automated operation. Actual project operations generally follow the operating rules; however, human intervention periodically deviates from the general operating rules to accommodate day-to-day realities such as equipment failure and maintenance, changing hydrologic conditions, power demands and energy pricing, and other factors. In addition to differences between modeled operations versus actual operations that include human interventions, there are also inherent discrepancies due to input data inaccuracies (e.g., differences in hydrology data, turbine or generator efficiencies, or reservoir storage curves). It is

important to understand that, due to these differences between actual operating conditions and modeled conditions, model results will never completely match historical operations.

The goal of the single year verification scenario is to obtain annual total modeled generation for each plant that is within 5 percent of historical generation. In cases where the modeled results exceeded the 5 percent goal, potential causes for the differences were examined to determine whether the difference was due to deviations in model setup, historical deviations in operations, or discrepancies in the reconstructed hydrology data.

4.1 Summary of Modeled Results versus Historical Data

Verification of the NWE CHEOPS Model was performed using historical operations data provided by NorthWestern Energy and publicly available data from the USBR. Verification of the model was performed using two different scenarios, or model runs. The first (historical baseline) performs a verification of the model hydrologic data for the POR (1/1/1988 through 11/30/2014). The second verification scenario was conducted for the specific water year 2014 (V_2014 WY). Model results presented in this report represent the model configuration as of February, 2015.

4.1.1 Historical Baseline

The historical baseline results were compared to historical operations (total discharge) at each reservoir for the hydrologic period 1/1/1988 through 11/30/2014. This scenario is based on the Base Case scenario definition and does not necessarily represent how the Hydros were operated on a daily or even monthly basis; the intent of this scenario is to verify the synthetic hydrology is representative of the historical/recorded hydrology within the modeled system. Table 4-1 and Figures A-1 through A-13 (Appendix A) show the daily and cumulative modeled (verification scenario) discharges from each of the reservoirs as compared to the historical (observed) discharges and USGS gages records for the same period. For the hydrologic period 1/1/1988 through 11/30/2014, with the exception of Black Eagle, the NWE CHEOPS Model simulated cumulative discharges for each development compare favorably with the available site specific

historical cumulative discharges. It appears that the historical operations data at Black Eagle may be underestimating the spill/leakage occurring at the site as the synthetic hydrology compares favorably at Holter and Rainbow, which are upstream and downstream of Black Eagle.

TO HISTORICAL AND USGS RECORDS									
Development	Percent Difference from Daily Historical Operations	Percent Difference from Daily USGS							
Hebgen	-1.6%	0.1%							
Madison	0.9%	0.8%							
Canyon Ferry	-2.3%	$1.1\%^{1}$							
Hauser	-0.2%	$-0.9\%^{2}$							
Holter	-0.6%	-0.5%							
Black Eagle	4.4%	$7.7\%^{3}$							
Rainbow	1.2%	-1.6%4							
Cochrane	1.3%	-1.5%4							
Ryan	1.4%	-1.5%4							
Morony	2.2%	-2.1%							
Thompson Falls	0.4%	NA ⁵							
Mystic Lake	$14.2\%^{6}$	0.3%							
West Rosebud Lake	NA	0.7%							

TABLE 4-1 MODELED TOTAL DISCHARGE COMPARED TO HISTORICAL AND USGS RECORDS

1. USGS gage upstream of reservoir and does not account for the entire drainage area.

2. Full period of record (1/1/1988 through 11/30/2014) unavailable at the USGS gage 06065500.

- 3. Upstream USGS gage prorated to drainage area of Dam through direct drainage area proration.
- 4. Downstream USGS gage prorated to drainage area of Dam through direct drainage area proration.
- 5. The USGS Gage 12391400 is downstream of Noxon and includes the incremental drainage and operations below Thompson Falls and is, therefore, not used for comparison.
- 6. The historical plant operations do not include the incremental inflows between Mystic Lake Dam and the USGS gage 06204050, additionally it appears as though the operations data may have underestimated periods of spill/leakage from the dam.

4.1.2 Scenario V_2014WY

The V_2014 WY scenario was established following the general operating requirements of the system (same rule logic as the Base Case scenario, Section 3). Differences in this scenario

include setting different target elevations such that the model will attempt to operate the reservoir pools as they were historically, where actual spills were performed, and turbine-generator unit outages were set to reflect historical availability (where data was available) for water year 2014. The historical outages were based on the outage event data ("*Raw_EventData*.CSV") provided by NorthWestern Energy, and adjusted by reviewing PI data for units electively not run or run in spinning reserve mode.

For this scenario, each reservoir was set to have target elevations which approximated historical elevations and historical unit outages, as best could be determined from the available historical data. Additionally, at certain plants spills were forced in an attempt to simulate the reported spill flows (daily average records provided by NorthWestern Energy). As shown in Table 4-2, simulated generation on an annual basis is within 5 percent at all of the developments except Madison and Thompson Falls. Based on a review of the power versus flow comparisons in Appendix C and the monthly generation comparison, Table 4-2, the model is overestimating the generation capability at Madison during high flows. The reduction of generation capability at Madison during high flows. The reduction comparison, Table 4-2, the model is overestimating the power versus flow comparisons in Appendix C and the monthly generation at Thompson Falls during high result of generation comparison, Table 4-2, the model is overestimating the power versus flow comparisons in Appendix C and the monthly generation at Thompson Falls during the lower flow periods. It is unclear if the overestimation is due to imprecise unit performance input, less than optimal historical dispatch of the powerhouses, or historically higher tailwater due to Noxon operations.

<u> </u>	_2014W	1: MO	DELEL	VEKS			IL GEN	EKAII		VIFAKI	5011		
Historical (MWh) 2013 2014													
2014 WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Madison	4,452	4,227	4,493	5,167	4,383	5,358	5,031	5,201	4,869	5,208	5,241	4,569	58,199
Canyon Ferry	21,642	20,870	23,171	21,477	21,484	33,250	38,698	37,001	29,481	33,118	26,643	26,398	333,233
Hauser	8,931	8,478	9,242	8,481	8,663	11,605	10,214	7,295	11,316	12,027	12,056	11,456	119,764
Holter	16,359	16,448	18,190	17,050	17,506	25,474	25,543	29,268	24,992	27,334	22,890	21,504	262,558
Black Eagle	9,336	8,825	6,779	7,463	6,374	13,601	14,557	15,135	14,657	11,671	10,783	10,434	129,615
Rainbow	23,806	22,968	23,619	22,404	21,720	38,004	43,536	45,172	42,428	38,378	32,622	30,575	385,232
Cochrane	16,210	15,376	15,890	15,717	15,377	29,696	35,740	39,310	33,119	25,573	23,453	18,400	283,861
Ryan	29,138	28,468	28,641	27,374	26,807	41,482	39,580	46,422	44,990	42,169	39,650	38,446	433,167
Morony	17,527	16,886	16,576	16,246	15,035	17,683	17,163	17,711	19,115	29,574	24,258	23,423	231,197
Thompson Falls	34,041	32,613	31,947	38,548	34,045	45,243	60,891	55,829	53,999	61,514	35,980	25,808	510,458
Mystic	5,643	3,487	5,485	5,003	3,937	3,154	1,800	4,318	8,065	8,616	8,696	7,014	65,218
System Total	187,085	178,646	184,033	184,930	175,331	264,550	292,753	302,662	287,031	295,182	242,272	218,027	2,812,502
NorthWestern Energy Plants	165,443	157,776	160,862	163,453	153,847	231,300	254,055	265,661	257,550	262,064	215,629	191,629	2,479,269
Modeled (MWh)													
	2013			2014									
2014 WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Madison	4,565	4,298	4,658	5,351	4,636	5,904	5,321	5,836	5,458	5,927	5,992	4,772	62,718
Canyon Ferry	21,245	20,184	23,130	21,397	21,141	35,499	39,106	41,056	27,256	33,351	25,543	26,885	335,793
Hauser	9,177	8,702	9,533	8,813	8,757	11,933	10,368	7,569	11,078	11,864	11,822	11,492	121,108
Holter	17,664	16,751	18,931	17,433	16,649	25,686	24,928	27,823	24,645	28,283	23,235	22,130	264,158
Black Eagle	10,523	10,101	8,418	7,892	7,461	12,817	14,035	13,982	13,642	11,653	10,633	10,298	131,455
Rainbow	25,032	24,371	24,955	23,133	25,151	37,286	45,529	47,458	45,466	39,492	33,722	31,144	402,739
Cochrane	17,324	16,779	17,089	16,232	17,617	29,204	37,570	38,359	35,800	27,179	24,181	18,544	295,878
Ryan	30,747	30,367	29,321	30,368	30,338	42,255	40,517	45,273	45,215	43,258	42,011	39,442	449,112
Morony	17,999	17,429	17,450	17,441	16,135	17,652	17,633	13,836	16,919	30,692	25,158	23,981	232,325
Thompson Falls	35,666	35,650	35,300	41,717	36,821	47,847	60,155	58,989	56,489	61,082	39,618	27,609	536,943
Mystic	5,860	3,439	5,921	5,318	3,935	3,169	2,062	4,343	7,930	8,548	8,813	7,030	66,368
System Total	195,802	188,071	194,706	195,095	188,641	269,252	297,224	304,524	289,898	301,329	250,728	223,327	2,898,597
NorthWestern Energy Plants	174,557	167,887	171,576	173,698	167,500	233,753	258,118	263,468	262,642	267,978	225,185	196,442	2,562,804
						ce (MWh)							
	2013			2014	Modeled	- Historica							
2014 WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Madison	113	71	165	184	253	546	290	635	589	719	751	203	4,519
Canyon Ferry	-397	-686	-41	-80	-343	2,249	408	4,055	-2,225	233	-1,100	487	2,560
Hauser	246	224	291	332	94	328	154	274	-2,223	-163	-234	36	1,344
Holter	1,305	303	741	383	-857	212	-615	-1,445	-347	949	345	626	1,600
Black Eagle	1,187	1,276	1,639	429	1,087	-784	-522	-1,153	-1,015	-18	-150	-136	1,840
Rainbow	1,226	1,403	1,336	729	3,431	-718	1,993	2,286	3,038	1,114	1,100	569	17,507
Cochrane	1,114	1,403	1,199	515	2,240	-492	1,830	-951	2,681	1,606	728	144	12,017
Ryan	1,609	1,899	680	2,994	3,531	773	937	-1,149	225	1,089	2,361	996	15,945
Morony	472	543	874	1,195	1,100	-31	470	-3,875	-2,196	1,118	900	558	1,128
Thompson Falls	1,625	3,037	3,353	3,169	2,776	2,604	-736	3,160	2,490	-432	3,638	1,801	26,485
Mystic	217	-48	436	315	-2	15	262	25	-135	-68	117	16	1,150
System Total	8,717	9,425	10,673	10,165	13,310	4,702	4,471	1,862	2,867	6,147	8,456	5,300	86,095
NorthWestern Energy Plants	9,114	10,111	10,714	10,245	13,653	2,453	4,063	-2,193	5,092	5,914	9,556	4,813	83,535
	- ,							_,	-,	-, •	- ,200	-,010	
Percent Difference (%) Difference/Historical													
2013 2014													
2014 WY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
Madison	2.5%	1.7%	3.7%	3.6%	5.8%	10.2%	5.8%	12.2%	12.1%	13.8%	14.3%	4.4%	7.8%
Canyon Ferry	-1.8%	-3.3%	-0.2%	-0.4%	-1.6%	6.8%	1.1%	11.0%	-7.5%	0.7%	-4.1%	1.8%	0.8%
Hauser	2.8%	2.6%	3.1%	3.9%	1.1%	2.8%	1.5%	3.8%	-2.1%	-1.4%	-1.9%	0.3%	1.1%
	· · · ·			1									

TABLE 4-2 **V_2014WY: MODELED VERSUS HISTORICAL GENERATION COMPARISON**

Holter	8.0%	1.8%	4.1%	2.2%	-4.9%	0.8%	-2.4%	-4.9%	-1.4%	3.5%	1.5%	2.9%	0.6%
Black Eagle	12.7%	14.5%	24.2%	5.7%	17.1%	-5.8%	-3.6%	-7.6%	-6.9%	-0.2%	-1.4%	-1.3%	1.4%
Rainbow	5.1%	6.1%	5.7%	3.3%	15.8%	-1.9%	4.6%	5.1%	7.2%	2.9%	3.4%	1.9%	4.5%
Cochrane	6.9%	9.1%	7.5%	3.3%	14.6%	-1.7%	5.1%	-2.4%	8.1%	6.3%	3.1%	0.8%	4.2%
Ryan	5.5%	6.7%	2.4%	10.9%	13.2%	1.9%	2.4%	-2.5%	0.5%	2.6%	6.0%	2.6%	3.7%
Morony	2.7%	3.2%	5.3%	7.4%	7.3%	-0.2%	2.7%	-21.9%	-11.5%	3.8%	3.7%	2.4%	0.5%
Thompson Falls	4.8%	9.3%	10.5%	8.2%	8.2%	5.8%	-1.2%	5.7%	4.6%	-0.7%	10.1%	7.0%	5.2%
Mystic	3.8%	-1.4%	7.9%	6.3%	-0.1%	0.5%	14.6%	0.6%	-1.7%	-0.8%	1.3%	0.2%	1.8%
System Total	4.7%	5.3%	5.8%	5.5%	7.6%	1.8%	1.5%	0.6%	1.0%	2.1%	3.5%	2.4%	3.1%
NorthWestern Energy Plants	5.5%	6.4%	6.7%	6.3%	8.9%	1.1%	1.6%	-0.8%	2.0%	2.3%	4.4%	2.5%	3.4%

As previously noted, the actual reservoir operations were simulated in the V_2014WY scenario to mimic actual reservoir operations. Figures 4-1 through 4-13 show modeled elevations and flows along with historical elevations and flows for each reservoir. As shown in these figures, the model will not discretionarily spill; modeled spill will only occur once the reservoir reaches the defined spill elevation. As an example, during May 2014 the model simulates Rainbow filling up to full pool elevation, whereas historically discretionary/precautionary spills during this time held the pool at a much lower elevation. Overall, the model follows the trends of the historical elevations and discharges very closely for each of the reservoirs, with minor deviations due to actual operations.

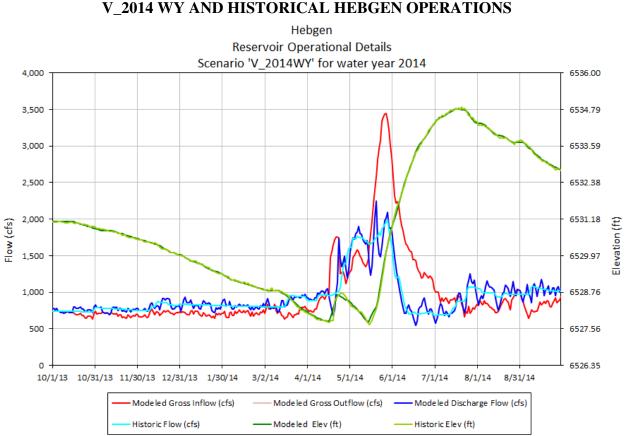


FIGURE 4-1 V_2014 WY AND HISTORICAL HEBGEN OPERATIONS

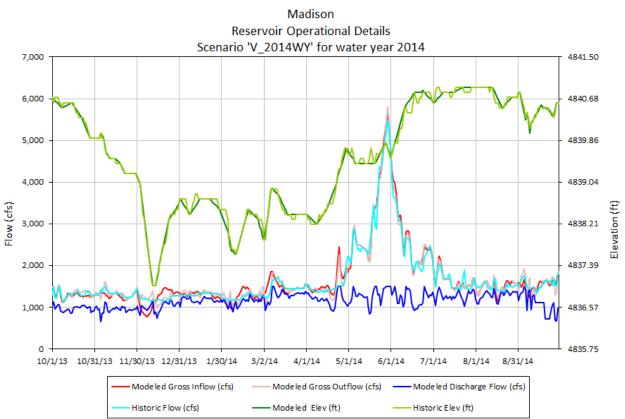


FIGURE 4-2 V_2014 WY AND HISTORICAL MADISON OPERATIONS

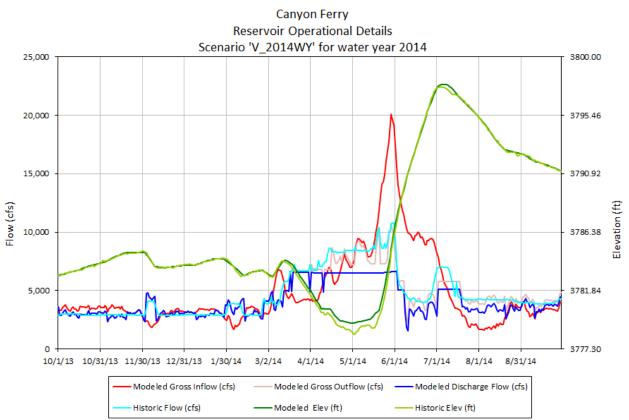


FIGURE 4-3 V_2014 WY AND HISTORICAL CANYON FERRY OPERATIONS

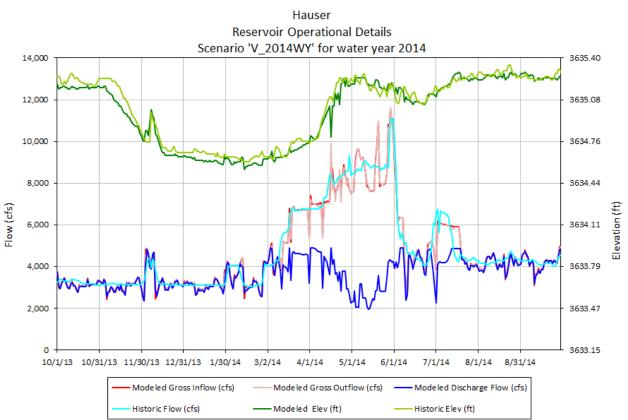


FIGURE 4-4 V_2014 WY AND HISTORICAL HAUSER OPERATIONS

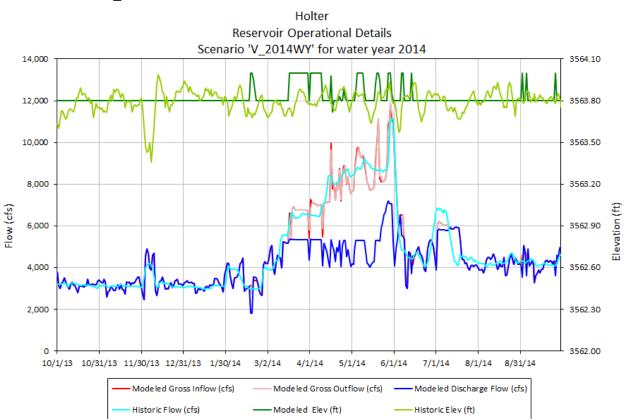


FIGURE 4-5 V_2014 WY AND HISTORICAL HOLTER OPERATIONS

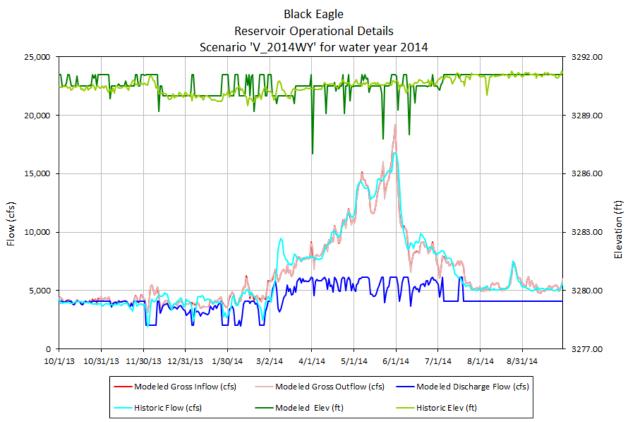


FIGURE 4-6 V_2014 WY AND HISTORICAL BLACK EAGLE OPERATIONS

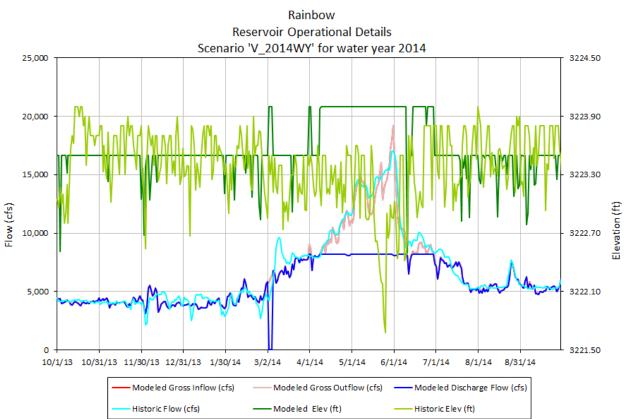


FIGURE 4-7 V_2014 WY AND HISTORICAL RAINBOW OPERATIONS

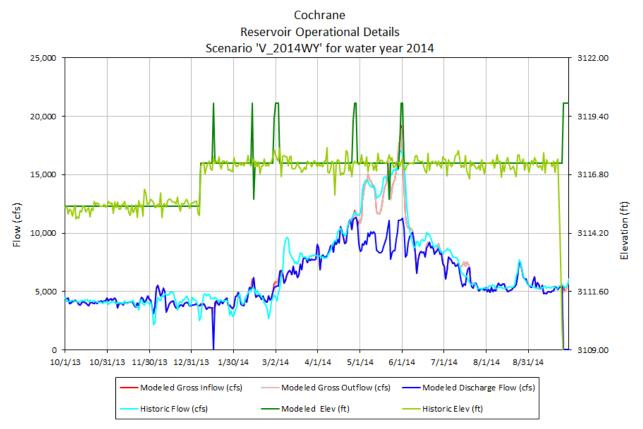


FIGURE 4-8 V_2014 WY AND HISTORICAL COCHRANE OPERATIONS

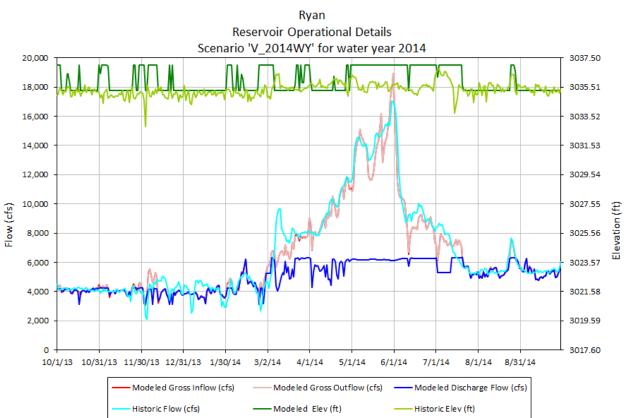


FIGURE 4-9 V_2014 WY AND HISTORICAL RYAN OPERATIONS

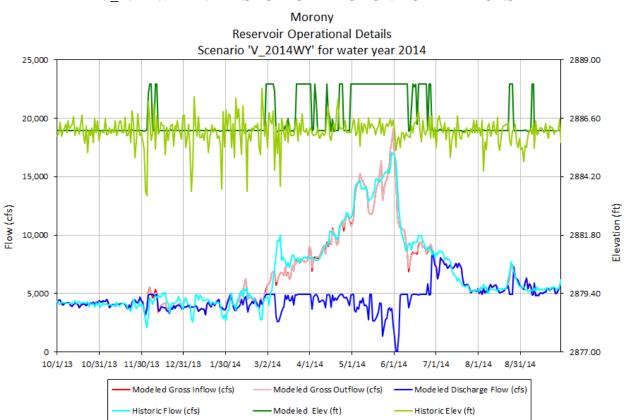


FIGURE 4-10 V_2014 WY AND HISTORICAL MORONY OPERATIONS

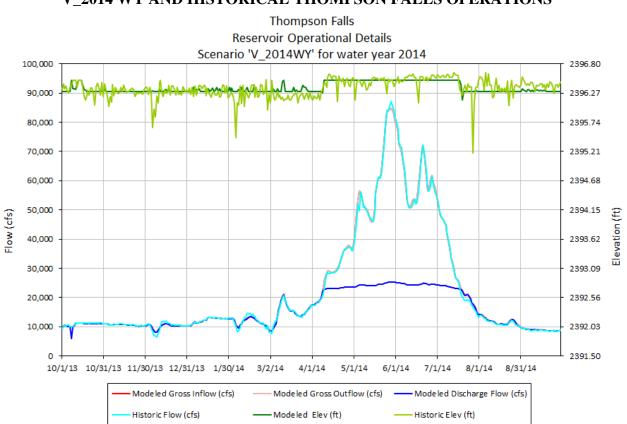


FIGURE 4-11 V_2014 WY AND HISTORICAL THOMPSON FALLS OPERATIONS

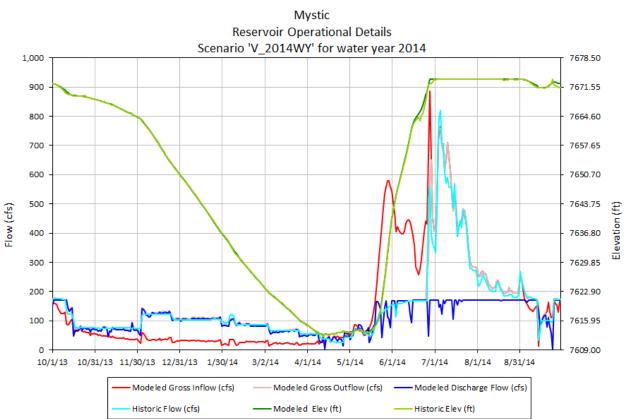


FIGURE 4-12 V_2014 WY AND HISTORICAL MYSTIC LAKE OPERATIONS

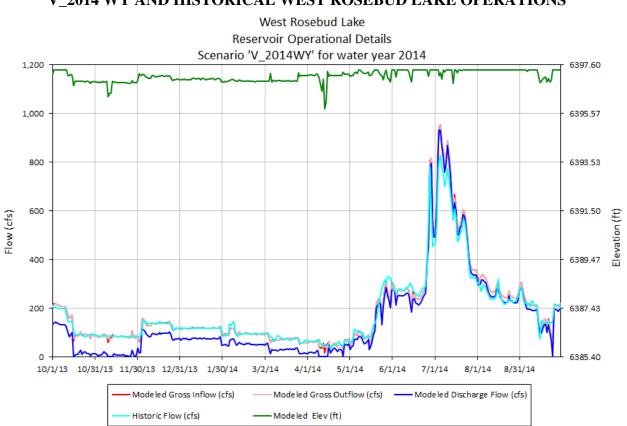


FIGURE 4-13 V_2014 WY AND HISTORICAL WEST ROSEBUD LAKE OPERATIONS

Section 5 Summary and Conclusions

5.1 Summary

The purpose of this operations/verification report is to document inputs and assumptions used in the development of the NWE CHEOPS Model, to demonstrate the model reasonably characterizes operations of the modeled system, and to demonstrate that the model is adequate for use in evaluating the effects of alternative operating scenarios. The CHEOPS software and this NWE CHEOPS Model are tools that, as this report demonstrates, can be successfully used to evaluate the relative sensitivity and response of the Hydros to changing operational constraints. The model is a tool and does not predict future conditions or outcomes. The model results must be analyzed and interpreted based on knowledge of hydrologic and hydraulic principles and understanding of results viewed in a relative, rather than an absolute, context.

5.2 Conclusions

As discussed in Section 4, the model verification process includes comparisons between modeled output and historical data. The goal of this process is to obtain no more than 5 percent variance when comparing modeled results to historical data for generation on an annual basis. The modeled release from the project is compared to historical data to show whether the model provides a reasonable representation of project operations throughout the year (e.g., the timing, magnitude, and duration of operations).

As shown in Table 4-2, there are significant swings between modeled and historical generation. However, there are many factors inherent in the model data and setup that can contribute to output discrepancies (i.e., deviations) when compared to historical data. In many cases, several of these factors may be involved simultaneously, which makes it difficult to isolate individual sources of difference. Four examples of potential sources of deviations from historical data are the standardized spilling rules, hydrology, minimum flow requirements, and historical unit outages and discrepancies in unit performance:

- Spill Operations The model follows a set of defined rules for spilling below the spill elevation, and it is seen in the historical records that operations vary greatly from year to year, month to month, and even day to day. This is one of the greatest sources of deviation and swings in the generation comparison and why the goal of this summary is to compare long-term trends rather than monthly values.
- Hydrology The model uses reconstructed unimpaired flow data as the input for daily inflow water to the system. The unimpaired hydrology was synthesized based on gage data and plant records, both of which have a certain amount of inherent error especially when multiple locations and data sources are involved. The overall hydrologic data set appears to be a good representation of daily inflows and is acceptable for use in future water management planning.
- Minimum Streamflow Requirements The model is set up to account for minimum streamflow requirements automatically. As a result, the model is proactive in automatically addressing minimum streamflow requirements rather than reactive in providing excess flow to avoid potential violations, as the case may be in actual operations.
- Unit Outages and Performance The model has been set up with post upgrade/rehabilitation unit performance information in the verification scenario V_2014WY, which takes into account only the outages noted in "Raw_EventData.CSV" or that could be discerned from the PI data supplied by NorthWestern Energy.

In interpreting the information provided in this model operations/verification report, it is important to reflect on the purpose of the model: to reasonably characterize development operations. Comparing model results with historical data confirms use of the model as a tool for simulating "real" operations. It is not possible with reasonable time to account for every outside influence or condition to match historical operations and hydrology.

Small changes in input data or model logic can often result in large swings in output. This is due to a number of reasons including (but not limited to) runoff characteristics, reliance on coordinated operations, and numerous/variable flow requirements. Each of these elements individually contributes to the sensitivity of the system. Combined, they multiply that sensitivity exponentially. The input data and logic in the historical base scenario is an attempt to consolidate the effects of these variables to achieve an approximation of "characteristic operations."

Most importantly, it must always be foremost in model discussions that the model should always be used to assess the relative impacts between scenarios. What this means is model verification is really the only time it is appropriate to compare model results with historical data. As previously stated, verification is intended to validate the model input data and model logic so the "Base Case" becomes the baseline for all subsequent analyses. The Verification scenario represents the Base Case scenario with the addition of forced elevations, approximations of historical spills, and unit outages to simulate actual historical operations.

In the opinion of HDR, verification results show the model compares favorably to historical data, reasonably characterizes study area operations, and is appropriate for use in evaluating the effects of alternative operating scenarios. However, appropriate use of the results is cautioned. As with any model, accuracy is highly dependent on input data; consequently, model results should be viewed in a relative, rather than absolute, context. This model is a tool that, as this report demonstrates, can be successfully used to evaluate the relative sensitivity and response of the Hydros to changing operational constraints.

APPENDIX A

PERIOD OF RECORD HYDROLOGY COMPARISON

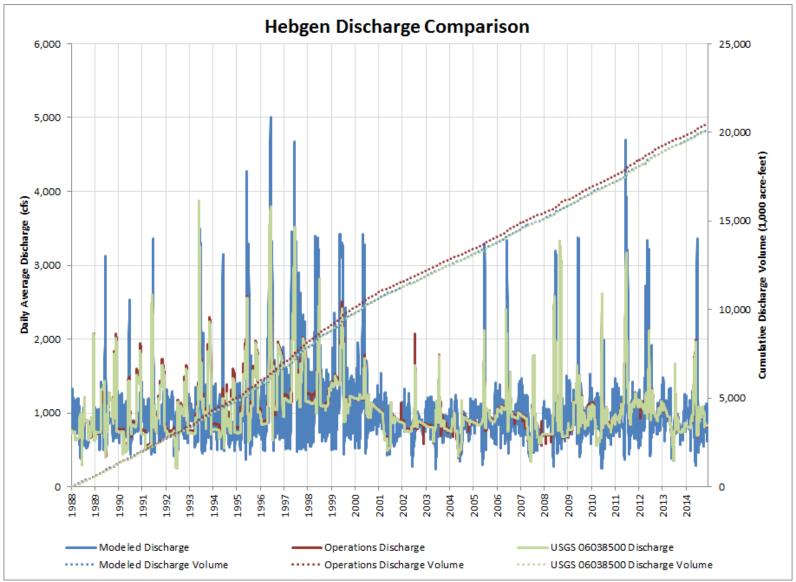


FIGURE A-1 MODELED AND HISTORICAL HEBGEN DISCHARGE COMPARISON

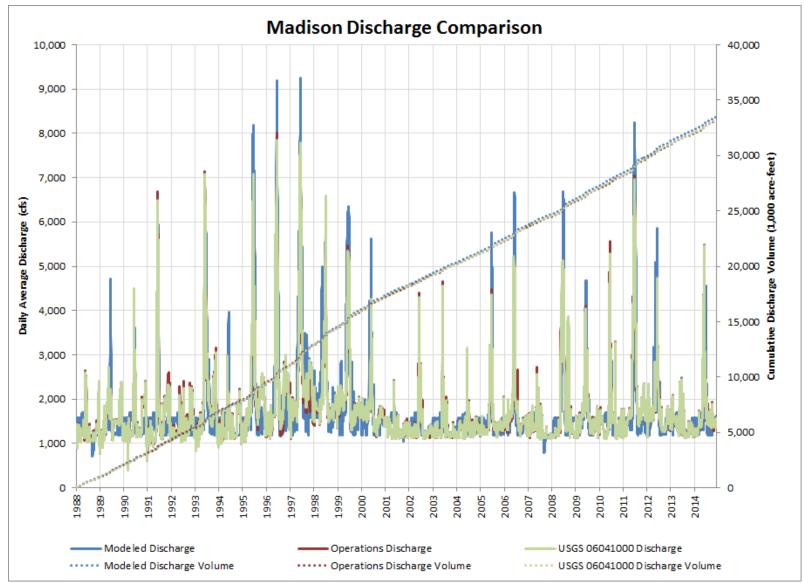


FIGURE A-2 MODELED AND HISTORICAL MADISON DISCHARGE COMPARISON

Canyon Ferry Discharge Comparison 40,000 100,000 NOTE: The USGS Gage 06054500 is upstream of Canyon Ferry and does 90,000 not account for the entire Canyon 35,000 · firester Ferry drainage or operations 80,000 30,000 Volume (1,000 acre-feet) 70,000 £ 25,000 60,000 Daily Average Discharge 20,000 50,000 Discharge 40,000 15,000 Cumulative 30,000 10,000 20,000 5,000 10,000 0 0 1988 1990 1992 1993 1995 1996 1998 1999 2000 2002 2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2014 1988 1991 1994 1997 2001 2011 Modeled Discharge Operations Discharge USGS 06054500 Discharge ····· Modeled Discharge Volume •••••• Operations Discharge Volume ······ USGS 06054500 Discharge Volume

FIGURE A-3 MODELED AND HISTORICAL CANYON FERRY DISCHARGE COMPARISON

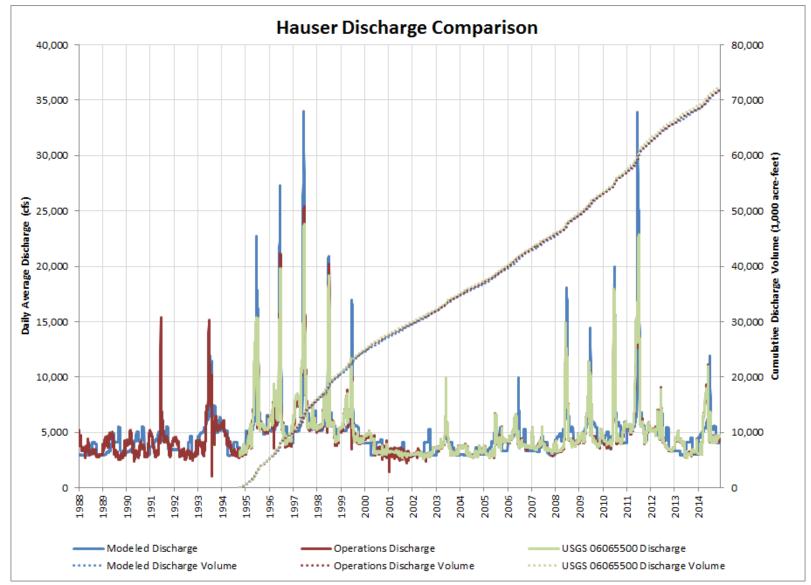


FIGURE A-4 MODELED AND HISTORICAL HAUSER DISCHARGE COMPARISON

FIGURE A-5 MODELED AND HISTORICAL HOLTER DISCHARGE COMPARISON

Black Eagle Discharge Comparison 60,000 120,000 NOTE: The USGS Gage 06078200 is upstream of Black Eagle and does not account for the entire Black Eagle drainage or operations 100,000 50,000 Volume (1,000 acre-feet) 40,000 80,000 Daily Average Discharge (cfs) 30,000 60,000 **Cumulative Discharge** 20,000 40,000 20,000 10,000 0 0 1988 1989 1990 1991 1992 1993 1995 1996 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 1994 1997 Modeled Discharge Operations Discharge USGS 06078200 Discharge Prorated ······ Modeled Discharge Volume •••••• Operations Discharge Volume ······ USGS 06078200 Discharge Prorated Volume

FIGURE A-6 MODELED AND HISTORICAL BLACK EAGLE DISCHARGE COMPARISON

Rainbow Discharge Comparison 60,000 140,000 NOTE: The USGS Gage 06090300 is downstream of Rainbow and includes the incremental drainage · and operations below Rainbow 120,000 50,000 feet) 100,000 Volume (1,000 acre-40,000 Daily Average Discharge (cfs) 80,000 30,000 **Cumulative Discharge** 60,000 20,000 40,000 10,000 20,000 0 0 1988 1990 1991 1992 1993 1995 1996 1998 1999 2000 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 1988 1994 1997 2001 Modeled Discharge Operations Discharge USGS 06090300 Discharge Prorated ····· Modeled Discharge Volume ······ Operations Discharge Volume ······ USGS 06090300 Discharge Prorated Volume

FIGURE A-7 MODELED AND HISTORICAL RAINBOW DISCHARGE COMPARISON

Cochrane Discharge Comparison 60,000 140,000 NOTE: The USGS Gage 06090300 is downstream of Cochrane and includes the incremental drainage 120,000 and operations below Cochrane 50,000 Volume (1,000 acre-feet) 100,000 40,000 Daily Average Discharge (cfs) 80,000 No. of Concession, Name 30,000 **Cumulative Discharge** 60,000 20,000 40,000 10,000 20,000 0 0 1988 1990 1991 1992 1993 1995 1996 1998 1999 2000 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 1988 1994 1997 2001 Modeled Discharge Operations Discharge USGS 06090300 Discharge Prorated ····· Modeled Discharge Volume •••••• Operations Discharge Volume ······ USGS 06090300 Discharge Prorated Volume

FIGURE A-8 MODELED AND HISTORICAL COCHRANE DISCHARGE COMPARISON

Ryan Discharge Comparison 60,000 140,000 NOTE: The USGS Gage 06090300 is downstream of Ryan and includes the incremental drainage and operations below Ryan 120,000 50,000 Volume (1,000 acre-feet) 100,000 40,000 Daily Average Discharge (cfs) 80,000 30,000 **Cumulative Discharge** 60,000 20,000 40,000 10,000 20,000 0 0 1988 1990 1991 1992 1993 1995 1996 1998 1999 2000 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 1980 1994 1997 2001 Modeled Discharge Operations Discharge USGS 06090300 Discharge Prorated ····· Modeled Discharge Volume •••••• Operations Discharge Volume ······ USGS 06090300 Discharge Prorated Volume

FIGURE A-9 MODELED AND HISTORICAL RYAN DISCHARGE COMPARISON

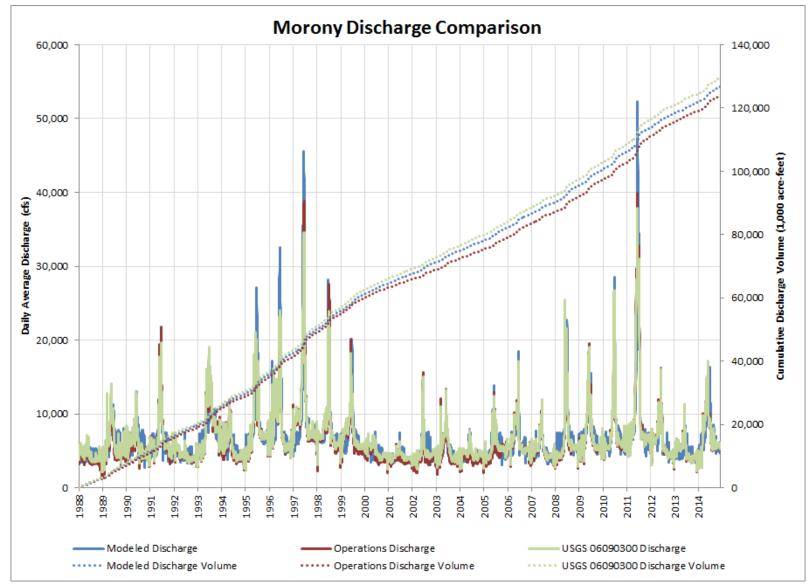


FIGURE A-10 MODELED AND HISTORICAL MORONY DISCHARGE COMPARISON

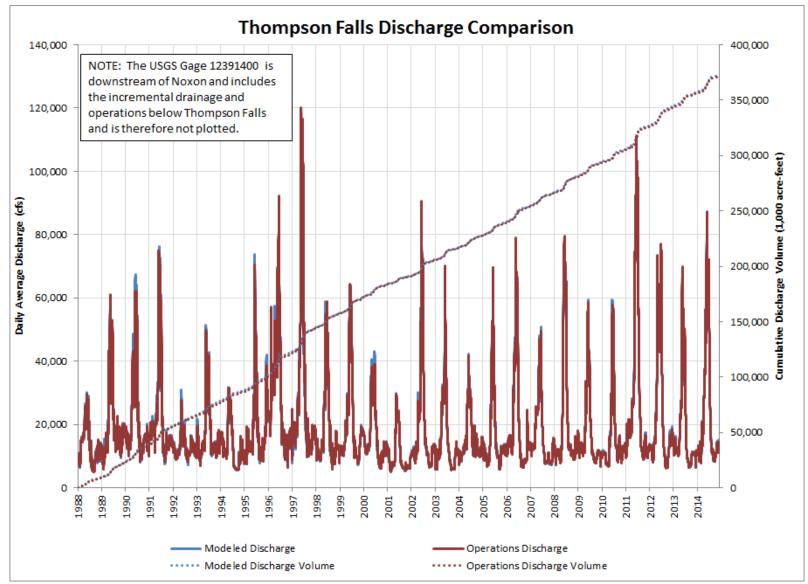


FIGURE A-11 MODELED AND HISTORICAL THOMPSON FALLS DISCHARGE COMPARISON

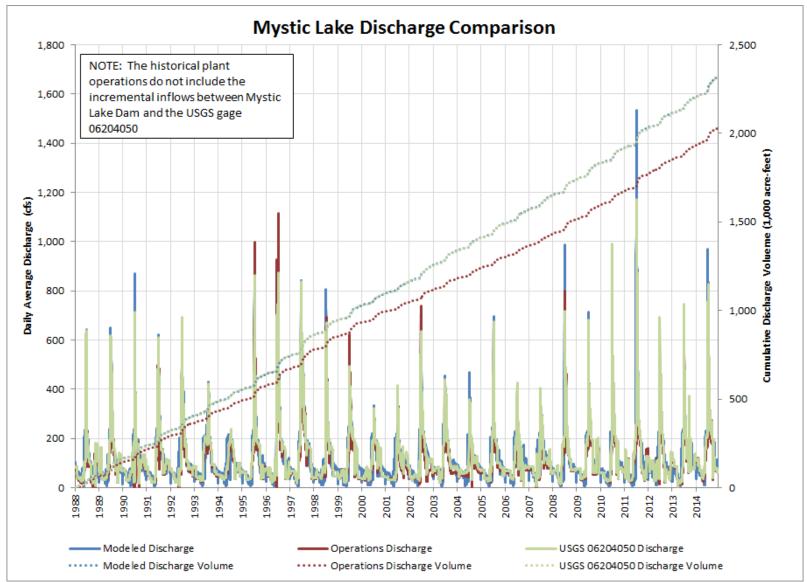


FIGURE A-12 MODELED AND HISTORICAL MYSTIC LAKE DISCHARGE COMPARISON

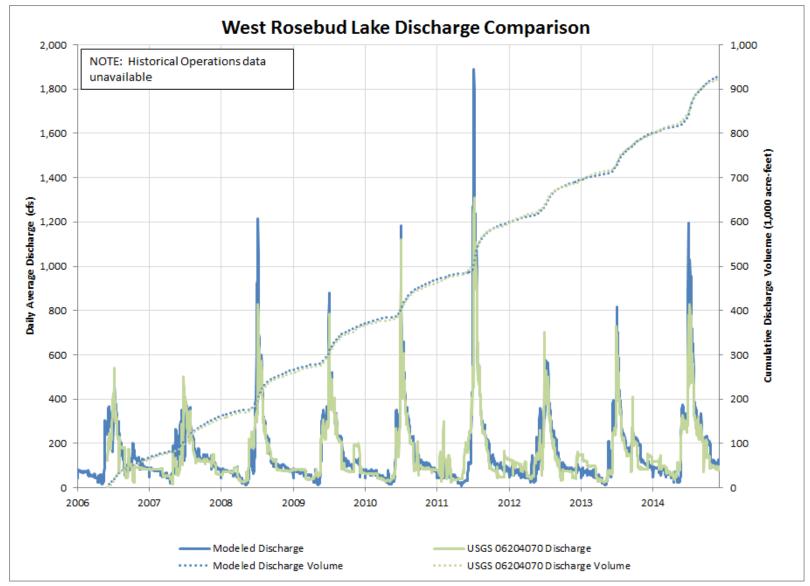


FIGURE A-13 MODELED AND HISTORICAL WEST ROSEBUD LAKE DISCHARGE COMPARISON

APPENDIX B BASE CASE SCENARIO DEFINITION

Complete Scenario Data for Scenario - Base Case

Written on 2/12/2015 2:37:56 PM

Scenario

 Name:
 Base Case

 Description:
 "Operational requirements and unit configuration as of Fall 2013.Peaking only at Canyon Ferry, Thompson Falls and Mystic."

 Notes:
 ASCANGAS 2015/2/10. KADAMEC 2015/2/10 Checked. KADAMEC 2015/2/12 Checked again

 System Settings:
 Base

System Settings

Name: Base

Description: "Base with Hydrology dataset computed for 1988 through Nov 2014. Station service of 0.32 percent included based on sheet ""Aux Loads"" from ""Generator info - JCummings.xlsx"."

Notes: BKROLAK 2015/2/3. ASCANGAS 2015/2/5 checked.

Loadshape	Hydrology Set	Elevation Carry-Ov	ver Forecast	Days	Forecas	st Accuracy	Metering Loss	Enable CNF Agreement Logic
6x16_Generic	Inflows_19880101-	-20141130Final.xls	TRUE	1	1	0.0032	TRUE	

Loadshape

Name: 6x16_Generic Description: Generic 6x16 Notes: BKROLAK 2014/12/16. ASCANGAS 2015/2/5 checked.

Month	Period	Durat	tion (hrs)	Price (\$)
Jan	1	6	` 50	(.)
Jan	2	0	70	
Jan	3	8	100	
Jan	4	0	70	
Jan	5	8	100	
Jan	6	0	70	
Jan	7	2	50	
Jan	8	6	40	
Jan	9	8	75	
Jan	10	0	40	
Jan	11	8	75	
Jan	12	2	40	
Feb	1	6	50	
Feb	2	0	70	
Feb	3	8	100	
Feb	4	0	70	
Feb	5	8	100	
Feb	6	0	70	
Feb	7	2	50	
Feb	8	6	40	
Feb	9	8	75	
Feb	10	0	40	
Feb	11	8	75	
Feb	12	2	40	
Mar	1	6	50	

Mar Mar Mar	2 3 4	0 8 0	70 100 70
Mar	5	8	100
Mar	6	0	70
Mar	7	2	50
Mar	8	6	40
Mar	9	8	75
Mar	10	0 8	40
Mar Mar	11 12	8 2	75 40
Apr	12	6	40 50
Apr	2	0	70
Apr	3	8	100
Apr	4	0	70
Apr	5	8	100
Apr	6	0	70
Apr	7	2	50
Apr	8	6	40
Apr Apr	9 10	8 0	75 40
Apr	11	8	40 75
Apr	12	2	40
May	1	6	50
May	2	0	70
May	3	8	100
May	4	0	70
May	5	8	100
May	6 7	0 2	70 50
May May	8	6	40
May	9	8	75
May	10	0	40
May	11	8	75
May	12	2	40
Jun	1	6	50
Jun	2	0	70
Jun Jun	3 4	8 0	100 70
Jun	4 5	8	100
Jun	6	Ő	70
Jun	7	2	50
Jun	8	6	40
Jun	9	8	75
Jun	10	0	40
Jun	11	8	75
Jun	12 1	2	40
Jul Jul	2	6 0	50 70
Jul	2	8	100
Jul	4	0	70
Jul	5	8	100
Jul	6	0	70
Jul	7	2	50

Nov 4 0 70 Nov 5 8 10 Nov 6 0 77 Nov 7 2 56 Nov 8 6 44 Nov 9 8 75 Nov 10 0 44 Nov 11 8 75 Nov 12 2 44	Jul Jul Jul Jul Aug Aug Aug Aug Aug Sep P P P P P P P P P P P P P P P P P P P	8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 8 9 10 11 2 2 3 4 5 8 9 10 11 2 2 3 1 1 2 1 1 1 2 1 2 1 1 1 2 1 1 1 1	6 8 0 8 2 6 0 8 0 8 2 6 0 8 0 8 0 2 6 8 0 8 0 2 6 8 0 8 0 2 6 8 0 8 0 2 6 8 0 8 0 2 6 8 0 8 0 2 6 8 0 8 0 2 6 8 0 8 0 2 6 8 0 8 0 2 6 8 0 8 0 2 6 8 0 8 0 2 6 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8	$\begin{array}{c} 40\\ 75\\ 40\\ 75\\ 40\\ 50\\ 70\\ 100\\ 70\\ 100\\ 70\\ 50\\ 40\\ 75\\ 40\\ 50\\ 70\\ 100\\ 70\\ 100\\ 70\\ 100\\ 70\\ 100\\ 70\\ 100\\ 70\\ 100\\ 70\\ 100\\ 75\\ 40\\ 50\\ 75\\ 40\\ 50\\ 75\\ 40\\ 50\\ 75\\ 40\\ 50\\ 75\\ 40\\ 50\\ 75\\ 40\\ 50\\ 75\\ 40\\ 50\\ 75\\ 40\\ 50\\ 75\\ 40\\ 75\\ 100\\ 70\\ 70\\ 100\\ 70\\ 70\\ 100\\ 70\\ 70\\ 100\\ 75\\ 100\\ 70\\ 100\\ 10$
Nov 2 0 76 Nov 3 8 10 Nov 4 0 76 Nov 5 8 11 Nov 5 8 11 Nov 6 0 76 Nov 7 2 56 Nov 8 6 44 Nov 9 8 75 Nov 10 0 44 Nov 11 8 75 Nov 12 2 44	Oct Oct	11 12	8 2	75 40
Nov 4 0 70 Nov 5 8 10 Nov 6 0 77 Nov 7 2 56 Nov 8 6 44 Nov 9 8 75 Nov 10 0 44 Nov 11 8 75 Nov 12 2 44	Nov	2	0	70
Nov 5 8 10 Nov 6 0 70 Nov 7 2 50 Nov 8 6 40 Nov 9 8 75 Nov 10 0 40 Nov 11 8 75 Nov 12 2 40				70
Nov 7 2 50 Nov 8 6 44 Nov 9 8 75 Nov 10 0 44 Nov 11 8 75 Nov 12 2 44		5	8	100
Nov 8 6 44 Nov 9 8 75 Nov 10 0 44 Nov 11 8 75 Nov 12 2 44				70
Nov 9 8 75 Nov 10 0 44 Nov 11 8 75 Nov 12 2 44				50
Nov 10 0 44 Nov 11 8 73 Nov 12 2 44				40 75
Nov11875Nov12240				40
				75
Dec 1 6 50				40
	Dec	1	6	50

Dec	2	0	70
Dec	3	8	100
Dec	4	0	70
Dec	5	8	100
Dec	6	0	70
Dec	7	2	50
Dec	8	6	40
Dec	9	8	75
Dec	10	0	40
Dec	11	8	75
Dec	12	2	40

Scenario Information for Hebgen

Plant/Nod	е	Physical Settings	Operation Settings	Generation Settings
Hebgen	Base_Sto	orBase		

Physical Settings

Hebgen Plant: Name: Base_Stor Description: Base Storage. Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/17 checked. KADAMEC 2015/2/12 Checked again Reservoir Storage: Base Reservoir Area: Monthly Evaporation: Tailwater Curve: Base Spillway Curve: Base Low Level Outlet: Alt. Spillway: Alt. Tailwater Curve: Ramp Rating Curve: Plant Options: Base_Storage

Reservoir Storage

Plant:

Plant: Hebgen Name: Base

Description:

"Elevations from file ""\CD_from_Client\3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls"" converted to acre-feet."

Notes: BKROLAK 2015/1/12. ASCANGAS 2015/1/16 checked.

Elevatio	n (ft)	Volume (af)
6470	3967	
6471	4959	
6472	6149	
6473	7339	
6474	8529	
6475	9918	
6476	11306	
6477	12694	
6478	14281	

6479	15868
6480	17653
6481	19438
6482	21422
6483	23405
6484	25587
6485	27769
6486	30149
6487	32728
6488	35505
6489	38480
6490	41654
6491	45025
6492	48397
6493	51968
6494	55538
6495	59307
6496	63075
6497	67042
6498	71208
6499	75571
6500	80133
6501	84894
6502	89853
6503	94811
6504	99968
6505	105324
6506	110878
6507	116828
6508	123175
6509	129919
6510	136862
6511	144002
6512	151341
6513	158878
6514	166614
6515	174548
6516	182680
6517	191209
6518	200135
6519	209458
6520	219177
6521	229094
6522	239210
6523	249524
6524	260037
6525	270748
6526	281459
6527	292368
6528	303277
6529	314385
6530	325691
6531	337393
6532	349493

6533	361989
6534	374882
6534.9	386184
6535	387873

Tailwater Curve

Plant: Hebgen

Name: Base

Description: "From ""CD_from_Client\5 - Tailwater Rating Curves\HEBTWR.xls""" Notes: BKROLAK 2015/1/19. ASCANGAS 2015/1/19 checked.

Elevation	(ft)	Flow (cfs)
6455	0	
6456.5	100	
6457.3	200	
6457.7	300	
6458	400	
6458.2	500	
6458.4	700	
6458.5	800	
6458.6	900	
6458.7	1000	
6458.8	1100	
6458.9	1200	
6459	1370	
6459.1	1500	
6459.5	2000	

Spillway Curve

Plant: Hebgen Name: Base

Description:

on: "From ""CD_from_Client\4 - Spillway discharge rating curves\HEB_Spillway Rating dwg 11143-A.xls"" with values multiplied for 6 gates."

Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/17 checked.

Elevation 6525.26	(ft) 0	Flow (cfs)
6525.5	24	
6526	102	
6526.12	120	
6526.44	180	
6526.5	192	
6526.76	240	
6527	288	
6527.03	300	
6527.65	450	
6528	546	
6528.23	600	
6528.62	720.84	
6528.93	816.6	
6529	839.04	
6529.19	900	

6529.5	1007.4
6530	1174.8
6530.05	1200
6530.33	1311
6530.83	1500
6531.2	1650
6531.67	1860
6532.33	2170.2
6533	2490
6533.33	2666.25
6534.01	3000
6534.87	3462
6535	3559.8
6536.07	4200
6537	4750.2
6538	5265
6538.32	5400
6539	5679.6
6539.97	5985.6
6541	6289.2
6542	6540
6543	6762.6
6544	6949.8
6545	7128

Plant Options

 Plant:
 Hebgen

 Name:
 Base_Storage

 Description:
 Storage Reservoir.

 Notes:
 BKROLAK 2015/1/8. ASCANGAS 2015/1/17 checked.

Min Po	owerhouse F	Flow	Plant Op	eration	TypeDelinked - Owner	Delinked - System	Target Unit Power (MW)	Full Pond Elev (ft)
0	0	FALSE	TRUE	0	6534.87			

Operation Settings

Plant: Hebgen Name: Base Description: Base conditions. Notes: ASCANGAS 2015/1/26. KADAMEC 2015/2/12 Checked. BKROLAK 2015/2/12 Ramping rate added. ASCANGAS 2015/2/12 checked. Spill Elevations: 6534.87 Target Elevations: Figure1.2-1 Minimum Elevations: 6530.26 Weekly Drawdown: Water Withdrawals: Reservoir Fluctuation Limits: Reservoir Fluctuation Rates: Tailwater Ramping Rates: Base Minimum Instantaneous Flow: 150cfs Minimum Daily Average Flow: Recreation Flows: 600cfsKirby

Bypass Flow:

Maximum Flow: 3500 Max Flow from Elev: Flashboards:

Spill Elevations

 Plant:
 Hebgen

 Name:
 6534.87

 Description:
 "From ""CD_from_Client\3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls""."

 Notes:
 BKROLAK 2015/1/8. ASCANGAS 2015/1/17 checked.

Calendar Day Elevation (ft) 1-Jan 6534.87 31-Dec 6534.87

Target Elevations

Plant: Hebgen

 Name:
 Figure 1.2-1

 Description:
 "License Exhibit B Evaluation ""Ex B-1 P-2188 Liceense Hebgen.pdf""."

 Notes:
 ASCANGAS 2015/1/25. KADAMEC 2015/2/12 Checked. BKROLAK 2015/2/12 Checked.

 Calendar Day
 Elevation (ft)

 1-Jan
 6528.7

 1-Apr
 6524

 1-May
 6524

 1-Jul
 6534.87

 1-Sep
 6534.87

 31-Dec
 6528.8

Minimum Elevations

Plant: Hebgen

Name: 6530.26

Description: "From ""3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls" for summer limit and dates (cells A89:A90). Max drawdown from ""PPL Agrmt 14-06-600-476A"" PDF page 29."

Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/20 checked.

 Calendar Day
 Elevation (ft)

 1-Jan
 6477

 20-Jun
 6530.26

 1-Oct
 6530.26

 31-Dec
 6477

Tailwater Ramping Rates

Plant: Hebgen

Name: Base

Description: "Per ""NWEhydrooperationsplan.docx"". 3) 10pct diff from previous day""s flow."

Notes: BKROLAK 2015/2/12. ASCANGAS 2015/2/12 checked.

Constrained by Stage Calendar Day Hourly Rate Up (units/hr) Daily Rate Up (units/day) Hourly Rate Down (units/hr) Daily Rate Down (units/day) Use Hrly Min/Max Houly Min/Max Difference Reference Plant

Minimum Instantaneous Flow

Plant: Hebgen

Name: 150cfs Description: "Base condition per ""Regulatory Constraints.pdf""." Notes: BKROLAK 2015/1/19. KADAMEC 2015/2/12 Checked

Calenda	r Day	Flow (cfs) Or Inflow
1-Jan	150	FALSE
31-Dec	150	FALSE

Recreation Flows

Plant: Hebgen

Name: 600cfsKirby

Description: ¹/600 cfs at Kirby Ranch per ""3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls"". Checking of the ""Use Custom Schedule"" checkbox will toggle the logic to use incremental accretions between Hebgen and Kirby in performing the required release calcs from Hebgen."

Notes: BKROLAK 2015/1/20. ASCANGAS 2015/1/20 checked.

Calendar	Day	Day of \	Week	Flow (cfs)	Start Ho	ur End Hour	Use Plant Discharge Only When PH Off	Use Custom Schedule
1-Jan	0	600	1	24	TRUE	FALSE	TRUE	
31-Dec	0	600	1	24	TRUE	FALSE	TRUE	

Maximum Flow

Plant: Hebgen Name: 3500

Description:

n: "Max Quake Lake limits, ""Hydro Operations Requirements Summary from Licenses & Agreements with Agencies by JHJ 2014-11-12.pdf"""

Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/17 checked.

Calendar	Day	Day of W	eek	Flow (cfs) Start Hour End Hour
1-Jan	0	3500	1	24
31-Dec	0	3500	1	24

Scenario Information for Madison

 Plant/Node
 Physical Settings
 Operation Settings
 Generation Settings

 Madison
 Base_RORDA
 Base
 Base

Physical Settings

 Plant:
 Madison

 Name:
 Base_RORDA

 Description:
 Base Run of River Daily Average.

 Notes:
 BKROLAK 2015/1/8. ASCANGAS 2015/1/17 checked. KADAMEC 2015/2/12 Checked again

 Reservoir Storage:
 Base

 Reservoir Area:
 Monthly Evaporation:

 Tailwater Curve:
 Base

 Spillway Curve:
 Base

Low Level Outlet: Alt. Spillway: Alt. Tailwater Curve: Ramp Rating Curve: Plant Options: Base_RORDA

Reservoir Storage

Plant: Madison

Name: Base

Description: "Elevations from file ""\CD_from_Client\3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls"" converted to acre-feet." Notes: BKROLAK 2015/1/12. ASCANGAS 2015/1/16 checked.

Elevation	(ft)	Volume (af)
4826	2803	
4827	3215	
4828	4247	
4829	5671	
4830	7464	
4831	9609	
4832	12070	
4832.7	13983	
4833	14803	
4834	17749	
4835	20862	
4836	24116	
4837	27477	
4838	30939	
4839	34499	
4840	38159	
4841	41917	
4841.5	43964	
4842	46013	

Tailwater Curve

Plant: Madison

Name: Base

Description: "From ""5 - Tailwater Rating Curves\MADTW.xls""." Notes: BKROLAK 2015/1/19. ASCANGAS 2015/1/19 checked.

(ft)	Flow (cfs)
0	. ,
200	
400	
600	
800	
1000	
1200	
1400	
1600	
1800	
2000	
	200 400 600 800 1000 1200 1400 1600 1800

4724.8	2600
4725.3	3000
4725.8	3600
4726.1	4000
4726.7	5000
4727.1	6000
4727.3	7000
4727.4	8000
4727.5	10000

Spillway Curve

Plant: Madison

Name: Base

Description: "From ""4 - Spillway discharge rating curves\MAD_SpillTable R1.xls""." Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/17 checked.

Elevation	Flow (cfs)	
4832.7	0	
4833	0 59.84	
4833.5	260.6	
4834	539.82	
4834.5	879.51	
4835	1270.35	
4835.5	1706.35	
4836	2183.24	
4836.5	2697.78	
4837	3247.39	
4837.5	3829.95	
4838	4443.7	
4838.5	5087.13	
4839	5758.93	
4839.5	6457.95	
4840	7183.16	
4840.5	7933.65	
4841	8708.6	
4841.5	9507.26	
4842	10328.94	
4843	12038.91	
4844	13834.04	
4844.5	14762.31	
4845	15710.46	
4846	17664.8	
4846.5	18670.24	
4847	19694.06	
4848	21795.58	
4850	32892.15	
4852	37254.13	
4854	42072.25	
4856	47278.62	
4858	52830.35	
4859	55725.97	
4860	58697.28	
4860.5	60210.49	

4860.75	60973.84
4861	61741.65
4862	64856.73
4864	71290.79
4866	77984.86
4868	84926.7
4870	92105.83
4872	99513.16

Plant Options

 Plant:
 Madison

 Name:
 Base_RORDA

 Description:
 Base Run of River Daily Average.

 Notes:
 BKROLAK 2015/1/8. ASCANGAS 2015/1/17 checked.

Min Powerhouse Flow Plant Operation TypeDelinked - Owner Delinked - System Target Unit Power (MW) Full Pond Elev (ft) 0 5 FALSE TRUE 0 4841

Operation Settings Plant: Madison Name: Base Description: Base conditions. Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/20 checked. KADAMEC 2015/2/12 Checked again Spill Elevations: 4841 Target Elevations: WinterDrawdown Minimum Elevations: 4831.5 Weekly Drawdown: Water Withdrawals: Reservoir Fluctuation Limits: Reservoir Fluctuation Rates: Tailwater Ramping Rates: Minimum Instantaneous Flow: 1100 Minimum Daily Average Flow: Recreation Flows: Bypass Flow: 200cfsApr-Jun Maximum Flow: Max Flow from Elev: Flashboards:

Spill Elevations

Plant: Madison Name: 4841 Description: "Full Por

Description: "Full Pond From ""1 - Drawings\2_Madison\P-2188-1005, F-81, Madison Spillway Plan & Details, 09-27-2000.TIF""." Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/19 checked.

> Calendar Day Elevation (ft) 1-Jan 4841 31-Dec 4841

Target Elevations

Plant: Madison

Name: WinterDrawdown

Description: "Winter drawdown per ""Regulatory Constraints.pdf". Roughly ""Elev 4840 to 4841 when no ice. 4839 early Dec to Early April"." Notes: BKROLAK 2015/1/8. KADAMEC 2015/1/19 Checked

 Calendar Day
 Elevation (ft)

 1-Jan
 4839

 1-Apr
 4839

 1-Jun
 4840.5

 1-Nov
 4840.5

 1-Dec
 4839

 31-Dec
 4839

Minimum Elevations

 Plant:
 Madison

 Name:
 4831.5

 Description:
 "From ""PPL Agrmt 14-06-600-476A.pdf"""

 Notes:
 BKROLAK 2015/1/8. ASCANGAS 2015/1/19 checked.

Calendar Day Elevation (ft) 1-Jan 4831.5 31-Dec 4831.5

Minimum Instantaneous Flow Plant: Madison

Name: 1100

Description: "Based on License Article 403 Operations outlined in ""Regulatory Constraints.pdf""" Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/19 checked.

Calendar	Day	Flow (cfs) Or Inflow
1-Jan	1100	FALSE
31-Dec	1100	FALSE

Bypass Flow

Plant: Madison

Name: 200cfsApr-Jun

Description: "200 cfs Apr1 to Jun30, 80 cfs otherwise. Per ""Regulatory Constraints.pdf""." Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/19 checked.

> Flow (cfs) Or Inflow Destination Node Calendar Day 1-Jan 80 FALSE 3 FALSE 3 31-Mar 80 FALSE 3 1-Apr 200 30-Jun 200 FALSE 3 1-Jul 80 FALSE 3 31-Dec 80 FALSE 3

Generation Settings

Plant: Madison

 Name:
 Base

 Description:
 Base conditions. Upper head extended on input curves to cuver full range of operational head.

 Notes:
 BKROLAK 2015/1/14. BKROLAK 2015/1/22. KADAMEC 2015/2/10 Checked

 Powerhouse Setup:
 BaseHD

 Powerhouse Weekend Ops:
 Maintenance Schedule:

 Minimum Flow Unit:
 Plant Flow Type:

 MaxCap
 Limit Off Peak Gen;

Powerhouse Setup

Plant: Madison

Name: BaseHD

Description: "Base powerhouse setup. U2 flow limited per ""Perf Verif Data mMDS.xls" 2.0-2.2 MW max generation @ approx. 70% gate & < 350 cfs. Using unit combined (total unit) efficiency. Reduced efficiency curves to represent maximum historical operations, reviewed both PI and daily operations records."

Notes: CDOE 2015/1/20. KADAMEC 2015/1/21 Checked. ASCANGAS 2015/1/22 limited to historical maximum output based on available PI data. KADAMEC 2015/2/6 Checked

Dispatched: FALSE

Unit Number		Headloss Turbine Efficiency	Generator Efficiency Gate Lea	akage
1	4units	"U1,3,4_Total_Unit_HD"	"U1,3_2.2_Limited_1.0Eff"	0
2	4units	U2_70PctGate_Total_Unit_HD	U2_2.3_Limited_1.0Eff	0
3	4units	"U1,3,4_Total_Unit_HD"	"U1,3_2.2_Limited_1.0Eff"	0
4	4units	"U1,3,4_Total_Unit_HD"	U4_2.5_1.0_Limited 0	

Turbine Efficiency Curves

Plant: Madison

Name: "U1,3,4_Total_Unit_HD"

Description: "Madison U1, 3, 4. All have same turbine. From ""Perf Verif Data mMDS.xls"" 2.3-2.5 MW max generation @ 100% gate & about 350 cfs. Used total unit performance and reduced performance to limit maximum output to maximum reported in ""CD_from_Client\2 - Historical Ops Data\PI Avg Hourly Data""

Notes: ASCANGAS 2015/1/26. KADAMEC 2015/2/6 Checked

Head (ft) 100 100 100 100 100 100 102.5 102.5 102.5 102.5 102.5 102.5 102.5 105 105	Flow (cfs) 103 165 230 297 367 440 101 162 225 290 359 429 98 158	Efficiency 0.4133 0.5558 0.6102 0.6353 0.6445 0.6445 0.6452 0.416 0.5538 0.6103 0.6351 0.6439 0.6472 0.4139 0.6472 0.4139
102.5 102.5	359 429	0.6439 0.6472
100		0.0452

110	93	0.4172
110	150	0.5558
110	209	0.6106
110	270	0.6353
110	334	0.6436
110	399	0.6472
113	90	0.4172
113	145	0.5558
113	203	0.6106
113	262	0.6353
113	324	0.6436
113	388	0.6472

Turbine Efficiency Curves

Plant: Madison

Name: U2_70PctGate_Total_Unit_HD

Description: "Madison U2. From ""Perf Verif Data mMDS.xls"" 2.0-2.2 MW max generation @ approx. 70% gate & < 350 cfs. Last row of turbine flow performance removed compared to U2 turbine input. Used total unit performance and reduced performance to limit maximum output to maxiumum reported in ""CD_from_Client\2 - Historical Ops Data\PI Avg Hourly Data""" Notes: ASCANGAS 2015/1/26. KADAMEC 2015/2/6 Checked

Head (ft)	Flow (cfs)	Efficiency
100 `́	89 ` ´	0.5835
100	154	0.6869
100	226	0.7038
100	299	0.71
100	372	0.7137
102.5	87	0.5865
102.5	151	0.686
102.5	221	0.7042
102.5	292	0.711
102.5	364	0.7129
105	84	0.5895
105	147	0.6851
105	215	0.7047
105	284	0.7121
105	355	0.7121
110	81	0.5827
110	140	0.6869
110	205	0.7056
110	272	0.7094
110	339	0.7118
113	79	0.5827
113	136	0.6869
113	199	0.7056
113	265	0.7094
113	329	0.7118

Generator Efficiency Curves

Plant: Madison

Name: "U1,3_2.2_Limited_1.0Eff"

Description: 1.0 efficiency as turbine efficiency inputs include generator efficiency. Limited to the maximum output of the available PI data Notes: ASCANGAS 2015/1/25. KADAMEC 2015/2/6 Checked

Max Gen	erator Cap	acity	Generator Ou	tput (MW)	Efficiency
2.2	0	1			-
2.2	2.2	1			

Generator Efficiency Curves

Plant: Madison

Name: U2_2.3_Limited_1.0Eff

Description: 1.0 efficiency as turbine efficiency inputs include generator efficiency. Limited to the maximum output of the available PI data Notes: ASCANGAS 2015/1/25. KADAMEC 2015/2/6 Checked

Max G	enerator C	apacity	Generator Output (MW)	Efficiency
2.3	0	1		
2.3	2.3	1		

Generator Efficiency Curves

Plant: Madison

Name: U4_2.5_1.0_Limited

Description: 1.0 efficiency as turbine efficiency inputs include generator efficiency. Notes: CDOE 2015/1/20. KADAMEC 2015/1/21 Checked. ASCANGAS 2015/1/22 limited to historical maximum output based on available PI data. KADAMEC 2015/2/6 Checked

Max Ge	enerator C	apacity	Generator Output (MW)	Efficiency
2.5	0	1		-
2.5	0.5	1		
2.5	0.9	1		
2.5	1.4	1		
2.5	1.8	1		
2.5	2.5	1		

Plant Flow Type

 Plant:
 Madison

 Name:
 MaxCap

 Description:
 Max Capacity plant.

 Notes:
 BKROLAK
 2015/1/14.

Calendar Day Run at Peak Efficiency 1-Jan FALSE 31-Dec FALSE

Scenario Information for Canyon Ferry

 Plant/Node
 Physical Settings
 Operation Settings
 Generation Settings

 Canyon Ferry
 Base_Peak
 Base
 Base

Physical Settings

Plant: Canyon Ferry

Name: Base_Peak

Description: Base Peaking with estimated Spillway capacity.

Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/17 checked. KADAMEC 2015/2/12 Checked again Reservoir Storage: Base Reservoir Area: Monthly Evaporation: Tailwater Curve: 3650.6 Spillway Curve: Estimate Low Level Outlet: Alt. Spillway: RiverOutlets Alt. Tailwater Curve: Ramp Rating Curve: Plant Options: Base_Peak

Reservoir Storage

Plant: Canyon Ferry

Name: Base

Description: "Base data from NWE provided data table in \3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls, which appears to be higher by about 50kaf from the BurRec raw elevation/storage curve data shown in ""ReferenceData\CanyonFerry Data\Canyon Ferry Tabular Data.xlsm"". This is presumed to be the total storage." Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/16 checked.

Elevation	(ft)	Volume (af)
3650	50000	r elame (al)
3740	586901	
3750	739500	
3760	924700	
3770	1147501	
3780	1410200	
3781	1438832	
3782	1467864	
3783	1497211	
3784	1527102	
3785	1557295	
3786	1587860	
3787	1618788	
3788	1650077	
3789	1681718	
3790	1713701	
3791	1746022	
3792	1778672	
3793	1811647	
3794	1844936	
3795	1878532	
3796	1912431	
3797	1946624	
3798	1981107	
3799	2015867	
3800	2050901	

Tailwater Curve

Plant: Canyon Ferry

Name: 3650.6

Description: Median TW elevation from BurRec Arc50 data series.

Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/16 checked.

Elevation (ft) Flow (cfs) 3650.6 0

Spillway Curve

Plant: Canyon Ferry

Name: Estimate

Description: Estimated flow capacity based on generic weir discharge. Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/17 checked.

> Elevation (ft) Flow (cfs) 3766 0 3767 756 3770 6048 3774 17106.3272 3778 31426.3298 3782 48384 3786 67618.6956 3790 88887.0838 3794 112010.5275 3797 130486.1256 3800 149878.7875 3803 170147.0335

Alt. Spillway Plant:

Plant: Canyon Ferry Name: RiverOutlets

Description: "Four Low level ""River Outlets" of 9500 cfs each. http://www.usbr.gov/projects/Facility.jsp?fac_Name=Canyon+Ferry+Dam&groupName=Dimensions"

Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/17 checked.

Elevation (ft) Flow (cfs) 0 38000

Plant Options

 Plant:
 Canyon Ferry

 Name:
 Base_Peak

 Description:
 Base Peaking. Full pond elevation is top of joint use pool.

 Notes:
 BKROLAK 2015/1/8. ASCANGAS 2015/1/17 checked.

 Min Powerhouse Flow
 Plant Operation TypeDelinked - Owner
 Delinked - System
 Target Unit Power (MW)
 Full Pond Elev (ft)

 0
 1
 FALSE
 TRUE
 0
 3797

Operation Settings

 Plant:
 Canyon Ferry

 Name:
 Base

 Description:
 Base conditions. Seasonal target is more representative of the minimim elevation at those date.

 Notes:
 BKROLAK 2015/1/8. ASCANGAS 2015/1/20 checked. KADAMEC 2015/2/12 Checked again

 Spill Elevations:
 Seasonal

Target Elevations: Seasonal Minimum Elevations: 3650_DeadStorage Weekly Drawdown: Water Withdrawals: Reservoir Fluctuation Limits: Reservoir Fluctuation Rates: Tailwater Ramping Rates: Minimum Instantaneous Flow: Minimum Daily Average Flow: Recreation Flows: Bypass Flow: MonthlyMedian Maximum Flow: 15000 Max Flow from Elev: 3750ElevLimit Flashboards:

Spill Elevations

Plant: Canyon Ferry

Name: Seasonal

Description: Seasonal forcing of spill at certain elevations to follow historical operations from Bureau of Reclamations Arc50 database. Notes: BKROLAK 2015/1/8. KADAMEC 2015/2/6 Checked

 Calendar Day
 Elevation (ft)

 1-Jan
 3794

 31-Mar
 3794

 1-May
 3800

 1-Nov
 3800

 30-Nov
 3794

 31-Dec
 3794

Target Elevations

Plant: Canyon Ferry

Name: Seasonal

Description: "Built from general description of elevation requirements, ""Operating Guidelines PPL & BOR Agreement" & ""PPL Agreement 14-06-600-476A""."

Notes: BKROLAK 2015/1/8. KADAMEC 2015/1/19 Checked

Calendar	Day	Elevation
1-Jan	3783	
31-Mar	3775	
1-May	3785	
30-Jun	3797	
31-Aug	3785	
30-Sep	3783	
31-Dec	3783	

Minimum Elevations

Plant: Canyon Ferry

Name: 3650_DeadStorage

Description: "Dead storage. per ""3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls""." Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/19 checked.

(ft)

SKRULAK 2015/1/8. ASCANGAS 2015/1/19 Checked.

Calenda	Day	Elevation (ft)
1-Jan	3650	
31-Dec	3650	

Bypass Flow

Plant: Canyon Ferry

Name: MonthlyMedian

Description: Median monthly values based on historical operations from 1988 - 2014 from the Bureau of Reclamations Arc50 database. Notes: ASCANGAS 2015/1/20. KADAMEC 2015/1/21 Checked

Calendar I	Day	Flow (cfs)	Or Inflow	Destination Node
1-Jan	0	FALSE	4	
1-Feb	0	FALSE	4	
1-Mar	0	FALSE	4	
1-Apr	325	FALSE	4	
1-May	600	FALSE	4	
1-Jun	647	FALSE	4	
1-Jul	699	FALSE	4	
1-Aug	692	FALSE	4	
1-Sep	375	FALSE	4	
1-Oct	0	FALSE	4	
1-Nov	0	FALSE	4	
1-Dec	0	FALSE	4	

Maximum Flow

Plant: Canyon Ferry Name: 15000

Description: "Max flow for Missouri river flood abatement. ""Operating Guidelines PPL & BOR Agrmt.pdf""" Notes: BKROLAK 2015/1/8. ASCANGAS 2015/1/19 checked.

Calendar	Day	Day of W	eek	Flow (cfs) Start Hour End Hour
1-Jan	0	15000	1	24
31-Dec	0	15000	1	24

Max Flow from Elev

Plant: Canyon Ferry

Name: 3750ElevLimit

Description: "Limit to 2800 cfs if below 3750 per ""Operating Guidelines PPL & BOR Agrmt.pdf"." Notes: BKROLAK 2015/1/8.. ASCANGAS 2015/1/19 checked.

> Elev (ft) Flow (cfs) 3749 2800 3750 100000

Generation Settings

Plant: Canyon Ferry

Name: Base

Description: Base estimated conditions. Upper head extended on input curves to cuver full range of operational head. Notes: BKROLAK 2015/1/19. BKROLAK 2015/1/22. KADAMEC 2015/2/6 Checked

Powerhouse Setup: Base_HD Powerhouse Weekend Ops: Maintenance Schedule: Minimum Flow Unit: Plant Flow Type: PeakCap Limit Off Peak Gen:

Powerhouse Setup

 Plant:
 Canyon Ferry

 Name:
 Base_HD

 Description:
 Base condition estimated performance.

 Notes:
 BKROLAK 2015/1/19. KADAMEC 2015/1/21 Checked. BKROLAK 2015/1/22 Heads extended. KADAMEC 2015/2/6 Checked

 Dispatched:
 FALSE

Unit Number Headloss Turbine Efficiency Generator Efficiency Gate Leakage

1	3units	U1-2-3_HD	"U1,2,3_20"	0
2	3units	U1-2-3_HD	"U1,2,3_20"	0
3	3units	U1-2-3_HD	"U1,2,3_20"	0

Turbine Efficiency Curves

Plant: Canyon Ferry Name: U1-2-3_HD Description: (Description) Notes: BKROLAK 2015/1/22. KADAMEC 2015/2/6 Checked

> Head (ft) Flow (cfs) Efficiency 100 707.15 0.7378 100 952.45 0.8039 100 1188.95 0.8468 100 1320.14 0.8774 100 1428.67 0.8919 100 1501.71 0.8846 100 1575.66 0.8756 100 1649.12 0.8703 100 1703.33 0.8619 100 1816.85 0.8386 100 1900.66 0.8183 112.5 750.05 0.7378 112.5 1010.23 0.8039 1261.07 0.8468 112.5 112.5 1400.22 0.8774 112.5 1515.33 0.8919 112.5 1592.81 0.8846 112.5 1671.24 0.8756 112.5 1749.16 0.8703 112.5 1806.65 0.8619 112.5 1927.06 0.8386 112.5 2015.95 0.8183 125 790.62 0.7378 125 1064.87 0.8039 125 1329.29 0.8468

125 125 125 125 125 125 125 133.5 133.5 133.5 133.5 133.5 133.5	1475.96 1597.3 1678.96 1761.64 1843.77 1904.38 2031.3 2125 817.06 1100.48 1373.74 1525.32 1650.71 1735.11 1820.55 1905.43	0.8774 0.8919 0.8846 0.8756 0.8703 0.8619 0.8386 0.8183 0.7378 0.8039 0.8468 0.8774 0.8919 0.8846 0.8756 0.8703
133.5 133.5	2099.23 2196.06	0.8386 0.8183
142	842 67	0.7378
142	1134.98	0.8039
142	1416.8	0.8468
142	1573.13	0.8774
142	1702.45	0.8919
142	1789.5	0.8846
142	1877.61	0.8756
142	1965.15	0.8703
142	2029.75	0.8619
142 142	2165.03 2264.9	0.8386 0.8183
174	2207.3	0.0100

Generator Efficiency Curves

 Plant:
 Canyon Ferry

 Name:
 "U1,2,3_20"

 Description:
 "Flat 95% efficiency based on turbine ratings of 17,531 kw and generators at 16,667 kw."

 Notes:
 BKROLAK 2015/1/19

Max Generator Capacity			Generator Output (MW)	Efficiency
20	0	0.95		-
20	20	0.95		

Plant Flow Type

Plant: Canyon Ferry Name: PeakCap Description: Peak plant option. Notes: BKROLAK 2015/1/19. KADAMEC 2015/2/6 Checked

> Calendar Day Run at Peak Efficiency 1-Jan TRUE 31-Dec TRUE

Scenario Information for Hauser

Plant/Node Physical Settings Operation Settings Generation Settings Hauser Base_ReReg Base Base

Physical Settings

 Plant:
 Hauser

 Name:
 Base_ReReg

 Description:
 Base Re Regulating with tailwater curve based on historical data.

 Notes:
 BKROLAK 2015/1/12. ASCANGAS 2015/1/17 checked.. KADAMEC 2015/1/21. BKROLAK 2015/1/22 Checked TW. KADAMEC 2015/2/10 Checked

Reservoir Storage: Base Reservoir Area: Monthly Evaporation: Tailwater Curve: Historical Spillway Curve: Base Low Level Outlet: Alt. Spillway: Alt. Tailwater Curve: Ramp Rating Curve: Plant Options: Base_ReReg

Reservoir Storage

 Plant.
 Hauser

 Name:
 Base

 Description:
 "Hauser plus Lake Helena storage capacity. From ""3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls"" converted to acre-feet."

Notes: BKROLAK 2015/1/16. ASCANGAS 2015/1/17 checked.

Elevation 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634	(ft) 46810 48893 51075 53336 55676 58096 60615 63253 66129 69352 73022 77108 81597 86617 92071 97982 104446 111478	Volume (af)
3633	104446	
3634 3635	111478 119132	
3636	127352	

Tailwater Curve

Plant: Hauser

Name: Historical

Description: "Elevation raised by 0.35" for the same flows from "5 - Tailwater Rating Curves\HAUTWR.xls" to align with hstorical readings reported in "HAU PI Avg Hourly.xlsx"."

Notes: KADAMEC 2015/1/21. BKROLAK 2015/1/22 Checked.

Elevation (ft) Flow (cfs) 3567.35 0 3568.55 2000 3569.55 4000 3570.45 6000 3571.25 8000 3571.95 10000 3572.55 12000 3573.15 14000 3573.65 16000 3574.15 18000 3574.65 20000 3575.55 25000 3576.45 30000 3577.05 35000 3577.45 40000

Spillway Curve

Plant: Hauser

Name: Base

Description: "Base from ""4 - Spillway discharge rating curves\HAU MAXIMUM SPILL RATING.xls""." Notes: BKROLAK 2015/1/19. KADAMEC 2015/2/6 Checked

Flow (cfs)

Elevation (ft) 3621 0 3623.05 5000 3624.5 10000 3625.62 15000 3626.55 20000 3627.4 25000 3628.2 30000 3628.88 35000 3629.63 40000 3631 50000 3632.3 60000 3633.7 70000 3634.9 80000 3635.9 90000 3636.4 95000 3636.9 100000 3637.4 105000 3638 110000 3638.6 113000 3639.1 114250 3639.3 113000

			3640.2 3640.8 3641.8 3642.9 3643.8	111750 115000 120000 130000 140000 150000 165000 188400												
	**********	***********	******													
Plant Opt	ions Plant: Name: Descriptic Notes:		•		ption to all IGAS 2015											
			Min Powe 0	rhouse Flo 3	w FALSE		eration Ty 0	peDelinked 3635.4	- Owner	Delinked -	System	Target U	nit Power (N	MW)	Full Pond	Elev (ft)
********	*****	******	******													
Operation	Weekly D Water Wit Reservoir Tailwater Minimum Recreatio Bypass Fl Maximum	ASCANG, ations: evations: Elevations: rawdown: hdrawals: Fluctuation Fluctuation Ramping F Instantane: Daily Avera n Flows: ow: Flow: from Elev:	3635.4 3635.2 3634.4 1 Limits: 1 Rates: Rates: cous Flow:		AMEC 201	5/2/10 Ch	ecked. Bł	KROLAK 201	5/2/12 Ra	mping rates	added. A	SCANGAS	S 2015/2/12	checked.		
stream Spill Elev			******													
	Plant: Name: Descriptic	Hauser 3635.4 n:	"Normal w	vater level.	""1 - Draw	/ings\4_Ha	user\P-21	188-1174, F-7	71, Hauser	General Ar	rangemen	it Plan, 03-	11-2011.TI	F""."		
	Notes:	BKROLA	(2015/1/1	2. ASCAN	IGAS 201	5/1/19 che	cked.									
			Calendar		Elevation											

Calendar Day Elevation (ft) 1-Jan 3635.4

31-Dec 3635.4

Target Elevations

Plant: Hauser

Name: 3635.2

"Estimated of end of day elevation. Operate between 3634.4 and 3635.4 per ""Regulatory Constraints.pdf" and From ""HDB HAU 198801 to 201411.xlsx" 50th percentile elevation." Description:

Notes: BKROLAK 2015/1/12. ASCANGAS 2015/1/19 checked.

> Calendar Day Elevation (ft) 1-Jan 3635.2 31-Dec 3635.2

Minimum Elevations

Plant: Hauser

Name: 3634.4

"License article 403 Maintain elevation between 3634.4 and 3635.4, ""Hydro Operations Requirements Summary from Licenses & Agreements with Agencies by JHJ 2014-11-12.pdf"." Description:

Notes: ASCANGAS 2015/1/25. KADAMEC 2015/2/10 Checked

> Calendar Day Elevation (ft) 1-Jan 3634.4 31-Dec 3634.4

Tailwater Ramping Rates

Plant: Hauser

Name: Base

"Per ""NWEhydrooperationsplan.docx"". 3) 10pct diff from inflow to Hauser. 4) Highest hourly to lowest hourly is no more than sum of 10pct of previous day"s average flow and increase or Description: decrease from CNF for yesterday or today. 5) hourly average flow change no more than 5pct." Notes: BKROLAK 2015/2/12. ASCANGAS 2015/2/12 checked.

		Constra	ined by St	tage	Calend	dar Day	Hourly	Rate Up (u	inits/hr)	Daily Rate Up (units/day)	Hourly Rate Down (units/hr)	Daily Rate Down (units/day)	Use Hrly
Min/Max	Houly Min/Max D	ifference	Refere	nce Plant									
		FALSE	1	0.05	0.1	0.05	0.1	TRUE	0.1	3			
*******	******	*****											
Generatio	on Settings Plant: Hause Name: Base Description:		PCS curve	s in ""8 - Po	ower Plant	Eq Perforn	nance Data	a\PCS_MW	/_vs_Flow	v_GUptmor.xlsx"". Using unit corr	bined efficiency"		
	Notes: BKRC Powerhouse Set Powerhouse We Maintenance Sch Minimum Flow U Plant Flow Type:	ekend Ops: iedule: nit:		AMEC 201	5/2/6 Che	cked							

Limit Off Peak Gen:

Powerhouse Setup

Plant: Hauser

Name: Base

Description: "From PCS curves in ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx". Using unit combined efficiency"

Notes: CDOE 2015/1/20. KADAMEC 2015/1/21 Checked

Dispatched: FALSE

Unit Number Headloss Turbine Efficiency Generator Efficiency Gate Leakage 1 6units U1_Total_Unit "U1,2,3,4,5_1.0_eff" 0 2 6units U2_Total_Unit "U1,2,3,4,5_1.0_eff" 0 6units U3_Total_Unit "U1,2,3,4,5_1.0_eff" 0 3 "U1,2,3,4,5_1.0_eff" 0 4 6units U4_Total_Unit 5 6units U5_Total_Unit "U1,2,3,4,5_1.0_eff" 0 6units U6_Total_Unit 6 U6_1.0_eff 0

Turbine Efficiency Curves

Plant: Hauser

Name: U1_Total_Unit

Description: "From PCS curves in ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx"", source file \ExcelFiles\Hauser_U1.xlsm. Used total unit performance."

Head (ft)	Flow (cfs)	Efficiency
57	280	0.37
57	402	0.5154
57	492	0.6317
57	596	0.6953
57	663	0.7813
57	698	0.8905
58.5	277.5	0.364
58.5	398.5	0.5068
58.5	494.5	0.6129
58.5	587	0.6882
58.5	658.5	0.7668
58.5	691.5	0.8762
60	275	0.3579
60	395	0.4983
60	497	0.5941
60	578	0.6811
60	654	0.7524
60	685	0.862
65	255	0.3563
65	383	0.4744
65	490	0.5562
65	550	0.6607
65	650	0.6988
65	700	0.7787
66	252	0.355
66	380	0.4709
66	485	0.5534
66	546	0.6555
66	642	0.6968

Plant: Hauser

Name: U2_Total_Unit

Description: "From PCS curves in "8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx", source file \ExcelFiles\Hauser_U2.xlsm. Used total unit performance."

Notes: CDOE 2015/1/20. KADAMEC 2015/1/21 Checked

Head (ft) 57 57 57 57 57 58.5 58.5 58.5 58.5 58.5	Flow (cfs) 270 360 455 577 645 678 270 358 450.5 561.5 641 674 270	Efficiency 0.3837 0.5755 0.6831 0.7182 0.8031 0.9168 0.3741 0.5642 0.6726 0.7196 0.7878 0.899 0.3645
58.5	358	0.5642
58.5	450.5	0.6726
58.5	641	0.7878
60	270	0.3645
60	356	0.5529
60	446	0.662
60	546	0.721
60	637	0.7725
60	670	0.8813
65	269	0.3377
65	350	0.5191
65	421	0.6474
65	518	0.7015
65	624	0.7279
65	679	0.8028
66	269	0.3326
66	348	0.5142
66	429	0.6257
66	513	0.6976
66	622	0.7192
66	684	0.7848

Turbine Efficiency Curves

Plant: Hauser

Name: U3_Total_Unit

Description: "From PCS curves in ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx"", source file \ExcelFiles\Hauser_U3.xlsm. Used total unit performance."

Head (ft)	Flow (cfs)	Efficiency
57	270	0.3837
57	360	0.5755
57	455	0.6831

$\begin{array}{c} 57\\ 57\\ 58.5\\ 58.5\\ 58.5\\ 58.5\\ 58.5\\ 58.5\\ 58.5\\ 58.5\\ 60\\ 60\\ 60\\ 60\\ 60\\ 60\\ 65\\ 65\\ 65\\ 65\\ 65\\ 65\\ 65\\ 66\\ 66\\ 66$	577 645 678 270 358 450.5 561.5 641 674 270 356 446 546 637 670 269 350 421 518 624 679 269 348	0.7182 0.8031 0.9168 0.3741 0.5642 0.6726 0.7196 0.7878 0.899 0.3645 0.5529 0.662 0.721 0.7725 0.8813 0.3377 0.5191 0.6474 0.7015 0.7279 0.8028 0.3326
65	679	0.8028
66	348	0.5142
66 66	429 513	0.6257 0.6976
66 66	622 684	0.7192 0.7848

Plant: Hauser

Name: U4_Total_Unit

Description: "From PCS curves in ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx"", source file \ExcelFiles\Hauser_U4.xlsm. Used total unit performance."

Head (ft)	Flow (cfs)	Efficiency
57	241	0.4299
57	363	0.5708
57	499	0.6228
57	651	0.6365
57	814	0.6367
57	976	0.6369
58.5	240	0.4208
58.5	358	0.5642
58.5	489.5	0.619
58.5	635	0.6362
58.5	793.5	0.6367
58.5	951.5	0.637
60	239	0.4118
60	353	0.5576
60	480	0.6151
60	619	0.636
60	773	0.6366

60	927	0.637
65	236	0.3849
65	340	0.5344
65	453	0.6016
65	577	0.6298
65	714	0.6362
65	856	0.6368
66	235	0.3807
66	335	0.5341
66	444	0.6045
66	563	0.6357
66	693	0.6455
66	827	0.6491

Plant: Hauser

Name: U5_Total_Unit

Description: "From PCS curves in ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx"", source file \ExcelFiles\Hauser_U5.xlsm. Used total unit performance."

Head (ft) 57 57 57 57 57 58.5 58.5 58.5 58.5 58.5	Flow (cfs) 401 453 510 569 767 921 404 455 510 567.5 748 898 407 457 510 566 729 875 418 464 511 562 616 864 421 465 512	0.2583 0.4574 0.6094 0.7283 0.6749 0.25 0.444 0.5942 0.7119 0.6752 0.6749 0.2418 0.4307 0.5789 0.6955 0.675 0.675 0.6749 0.2173 0.3916 0.5333 0.6466 0.7374 0.6309 0.2125 0.3848
66	421	0.2125
66 66	405 512	0.3848
66	561 614	0.6379
66 66	844	0.7286 0.636

Plant: Hauser

Name: U6_Total_Unit

Description: "From PCS curves in ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx"", source file \ExcelFiles\Hauser_U6.xlsm. Used total unit performance."

Head (ft)	Flow (cfs)	Efficiency
57	159	0.6515
57	318	0.6516
57	436	0.7128
57	553	0.7493
57	649	0.7981
57 57	747 883	0.8321 0.8213
57 57	003 1101	0.0213
57	1239	0.7525
58.5	160	0.6314
58.5	320	0.6314
58.5	431.5	0.7022
58.5	542	0.7454
58.5	640	0.789
58.5	733.5	0.8261
58.5	852	0.8302
58.5	1073.5	0.7527
58.5	1208	0.7525
60	161	0.6112
60	322	0.6113
60 60	427 531	0.6915 0.7414
60 60	631	0.7414 0.7798
60 60	720	0.8201
60	821	0.8391
60	1046	0.7527
60	1177	0.7525
65	166	0.5472
65	332	0.5473
65	416	0.6551
65	499	0.7282
65	603	0.7533
65	686	0.7946
65	770	0.8259
65 65	867 1086	0.8383 0.7529
66 66	1086	0.7529 0.5325
66	336	0.5325
66	412	0.6515
66	487	0.7349
66	589	0.7595
66	675	0.7953
66	754	0.8306
66	842	0.8501
66	973	0.8276

Generator Efficiency Curves Plant: Hauser

Name: "U1,2,3,4,5 1.0 eff"

Description: "Units 1-5 per ""8 - Power Plant Eq Performance Data\Generator info - JCummings.xlsx"". 1.0 efficiency as turbine efficiency inputs include generator efficiency."

Notes: CDOE 2015/1/20. KADAMEC 2015/1/21 Checked

Max Generator Capacity Generator Output (MW) Efficiency 2.5 0 1 2.5 0.5 1 2.5 1 1 2.5 1.5 1 2.5 2 1 2.5 2.5 1

Generator Efficiency Curves

Plant: Hauser

Name: U6_1.0_eff

Description: "U6 generator limited per "8 - Power Plant Eq Performance Data\Generator info - JCummings.xlsx"". 1.0 efficiency as turbine efficiency inputs include generator efficiency."

Notes: CDOE 2015/1/20. KADAMEC 2015/1/21 Checked

Max G	enerator C	apacity	Generator Output (MW)	Efficiency
4.3	0	<u>1</u>		-
4.3	0.9	1		
4.3	1.7	1		
4.3	2.6	1		
4.3	3.4	1		
4.3	4.3	1		
4.3	3.4	1 1		

Plant Flow Type

Plant: Hauser Name: MaxCap Description: Max flow plant. Notes: BKROLAK 2015/1/14. KADAMEC 2015/2/6 Checked

> Calendar Day Run at Peak Efficiency 1-Jan FALSE 31-Dec FALSE

Scenario Information for Holter

Plant/Node Physical Settings Operation Settings Generation Settings Holter Base_ReReg Base Base

Physical Settings

Plant: Holter Name: Base_ReReg

Description: Base Re Regulating with tailwater curve based on historical data. Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/17 checked. KADAMEC 2015/1/21. BKROLAK 2015/1/22 TW Checked. KADAMEC 2015/2/10 Checked

Reservoir Storage: Base Reservoir Area: Monthly Evaporation: Tailwater Curve: Historical Spillway Curve: Base Low Level Outlet: Alt. Spillway: Alt. Tailwater Curve: Ramp Rating Curve: Plant Options: Base_ReReg

Reservoir Storage

Plant: Holter

Name: Base

Description: "Base from ""3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls"" converted to acre-feet." Notes: BKROLAK 2015/1/12. ASCANGAS 2015/1/17 checked.

n (ft)	Volume (af)
158000	. ,
162000	
165000	
168000	
172000	
175000	
179000	
182000	
186000	
189000	
193000	
197000	
201000	
205000	
209000	
213000	
218000	
222000	
227000	
231000	
236000	
240000	
268001	
	158000 162000 165000 188000 172000 175000 175000 182000 188000 188000 188000 193000 193000 201000 205000 205000 205000 218000 2220000 2231000 236000 240000

Tailwater Curve

Plant: Holter

Name: Historical

Description: "Updated from ""5 - Tailwater Rating Curves\HOLTLWR.xls"" revised curve to align with historic data from ""HLT PI Avg Hourly.xls.""."

Notes: KADAMEC 2015/1/21. BKROLAK 2015/1/22 Checked

Elevation	Flow (cfs)	
3450	0	
3450.25	400	
3451.05	800	
3451.6	1200	
3451.96	2425.57	
3452.85	4954.4	
3453.57	6228.13	
3455.18	6519.32	
3455.55	7200	
3455.9	8000	
3456.7	10000	
3457.5	12000	
3458.2	14000	
3458.8	16000	
3459.45	18000	
3460	20000	
3460.6	22000	
3461.2	24000	
3461.65	26000	
3462.2	28000	

****** Spillway Curve

Plant:

Holter Name: Base

"Total Flow Spillway, Overtopping, less powerhouse flow from ""4 - Spillway discharge rating curves\HLT MAXIMUM SPILL RATING.xls""." Description:

Notes: BKROLAK 2015/1/12. ASCANGAS 2015/1/17 checked.

Elevatio	Elevation (ft)					
3562	93500	()				
3563	103700					
3564	114300					
3565	125200					
3566	136400					
3567	147600					
3568	150000					
3569	159600					
3570	170900					
3571	182700					
3572	195100					
3573	208000					
3574	221400					
3575	235400					
3576	249600					

Plant Options

Plant: Holter

Name:

Base_ReReg on: Base with Re-Reg option to all for ramping rates. BKROLAK 2015/1/12. ASCANGAS 2015/1/17 checked. Description:

Notes:

	Min Powerhouse Flow Plant Operation TypeDelinked - Owner Delinked - System Target Unit Power (MW) Full Pond Elev (ft) 0 3 FALSE TRUE 0 3564
*****	******
	s: 3563 : on Limits: on Rates: Rates: Rates: Base eous Flow: rage Flow:
*****	*****
Spill Elevations Plant: Holter Name: 3564 Description: Notes: BKROLA	"From ""Regulatory Constraints.pdf""." AK 2015/1/12. ASCANGAS 2015/1/19 checked. Calendar Day Elevation (ft) 1-Jan 3564 31-Dec 3564
Target Elevations Plant: Holter Name: 3563.8 Description: Notes: BKROLA	"From ""HDB HLT 198801 to 201411.xlsx"" 50th percentile elevation." AK 2015/1/12. ASCANGAS 2015/1/19 checked.
	Calendar Day Elevation (ft) 1-Jan 3563.8 31-Dec 3563.8
*****	*******
Minimum Elevations Plant: Holter Name: 3563	
	B - 35

Description: "License article 403 Maintain elevation between 3563 and 3564, ""Hydro Operations Requirements Summary from Licenses & Agreements with Agencies by JHJ 2014-11-12.pdf""."

Notes: ASCANGAS 2015/1/25. KADAMEC 2015/2/6 Checked

Calenda	Day	Elevation (ft)
1-Jan	3563	
31-Dec	3563	

Tailwater Ramping Rates

Plant: Holter

Name: Base

Description: "Per ""NWEhydrooperationsplan.docx"". 3) 10pct diff from inflow to Holter. 4) Highest hourly to lowest hourly is no more than sum of 10pct of previous day"'s average flow and increase or decrease from CNF for yesterday or today. 5) hourly average flow change no more than 5pct." Notes: BKROLAK 2015/2/12. ASCANGAS 2015/2/12 checked.

Min/Mov	Llouly Min/May Diffe		ned by Stag		Calendar	Day	Hourly Ra	ate Up (uni	its/hr)	Daily Rate Up (units/day)	Hourly Rate Down (units/hr)	Daily Rate Down (units/day)	Use Hrly
Min/Max Houly Min/Max Diff	Houly Min/Max Dille	FALSE	Reference 1	0.05	0.1	0.05	0.1	TRUE	0.1	3			
	Instantaneous Flow Plant: Holter Name: 3000 Description: Notes: BKROLAI	"3000 cfs	23. KADAN	leservoir an MEC 2015/2 Flow (cfs) FALSE	2/12 Chec		RESERVO	DIR-CAPA(CITY.xls""."				
		31-Dec	3000	FALSE									
	*****	*******											
	on Settings Plant: Holter Name: Base Description: d efficiency" Notes: BKROLAI Powerhouse BKROLAI Powerhouse Setup: Powerhouse Weeke Maintenance Sched Minimum Flow Unit: Plant Flow Type: Limit Off Peak Gen:	K 2015/1/ BaseHD nd Ops: ule: MaxCap		ed on input			ange of ope	erational h	ead. From	PCS curves in ""8 - Power Plant	Eq Performance Data\PCS_MV	V_vs_Flow_GUptmor.xlsx"". Us	ing unit
*******	*****	*******											
Powerho	use Setup Plant: Holter Name: BaseHD Description:	"From PC	CS curves in	n ""8 - Pow	er Plant E	q Performa	nce Data\P	CS_MW_v	vs_Flow_G	Uptmor.xlsx"". Using unit combir	ned efficiency and limiting flow b	ased on PI data."	
	Notes: ASCANG Dispatched:	AS 2015/2 FALSE	2/5. KADA	MEC 2015/	2/6 Check	ed			B - 36	-			

2015 ERPP Volume 2, Chapter 5 Page 121 of 192

Unit Numb	ber	Headloss Turbine Efficiency	Generator Efficiency	Gate Leakage
1	4units	U1_Total_UnitHD_Rev1	"U1,2,3,4_1.0_eff"	0
2	4units	U2_Total_UnitHD_Rev1	"U1,2,3,4_1.0_eff"	0
3	4units	U3_Total_UnitHD_Rev1	"U1,2,3,4_1.0_eff"	0
4	4units	U4_Total_UnitHD_Rev1	"U1,2,3,4_1.0_eff"	0

Plant: Holter

Name: U1_Total_UnitHD_Rev1

Description: "From PCS curves in ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx"", source file \ExcelFiles\5Holter_U1.xlsm. Used total unit performance. Total Unit performance extended for full head range and limited based on PI data."

Notes: ASCANGAS 2015/2/5. KADAMEC 2015/2/6 Checked

Head (ft)	Flow (cfs)	
91	377.22	0.268
91	515.23	0.3924
91 91	616.44 717.65	0.4919 0.5634
91 91	828.05	0.5634
91	920.06	0.6592
91	1012.07	0.6991
91	1104.07	0.7324
91	1196.08	0.7606
91	1288.08	0.7847
91	1380.09	0.8056
91	1518.1	0.799
91	1656.11	0.7934
99.25	393.95	0.268
99.25	538.08	0.3924
99.25	643.78	0.4919
99.25	749.47	0.5634
99.25	864.78	0.6103
99.25	960.86	0.6592
99.25	1056.95 1153.03	0.6991
99.25 99.25	1249.12	0.7324 0.7606
99.25 99.25	1345.21	0.7847
99.25	1441.29	0.8056
99.25	1585.42	0.799
99.25	1729.55	0.7934
107.5	410	0.268
107.5	560	0.3924
107.5	670	0.4919
107.5	780	0.5634
107.5	900	0.6103
107.5	1000	0.6592
107.5	1100	0.6991
107.5	1200	0.7324
107.5	1300	0.7606
107.5 107.5	1400 1500	0.7847 0.8056
107.5	1650	0.8056
107.5	1050	0.799

107.5 108.5 108.5 108.5 108.5 108.5 108.5 108.5 108.5 108.5 108.5 108.5 108.5 108.5 108.5 108.5 109.5 109.5 109.5 109.5	1800 411.9 562.6 673.11 783.62 904.18 1004.64 1105.1 1205.57 1306.03 1406.5 1506.96 1657.66 1808.35 413.8 565.19 676.2 787.22 908.33 1009.26 1110.19 1211.11	0.7934 0.268 0.3924 0.4919 0.5634 0.6592 0.6991 0.7324 0.7606 0.7847 0.8056 0.799 0.7934 0.8056 0.799 0.7934 0.268 0.3924 0.4919 0.5634 0.6592 0.6991 0.7324
109.5	1009.26	0.6592
109.5	1412.96	0.7847
109.5 109.5	1513.89 1665.28	0.8056 0.799
109.5	1816.67	0.7934

Plant: Holter

Name: U2_Total_UnitHD_Rev1

Description: "From PCS curves in ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx"", source file \ExcelFiles\5Holter_U2.xlsm. Used total unit performance. Total Unit performance extended for full head range and limited based on PI data." Notes: ASCANGAS 2015/2/5. KADAMEC 2015/2/6 Checked

Head (ft)	Flow (cfs)	,
91	377.22	0.268
91	478.43	0.4225
91	579.64	0.5231
91	680.84	0.5938
91	782.05	0.6462
91	874.06	0.6939
91	966.06	0.7324
91	1058.07	0.7642
91	1173.08	0.7755
91	1265.08	0.799
91	1380.09	0.8056
91	1472.1	0.824
91	1610.11	0.8222
91	1725.11	0.8203
99.25	393.95	0.268
99.25	499.65	0.4225
99.25	605.34	0.5231

Plant: Holter

Name: U3_Total_UnitHD_Rev1

Description: "From PCS curves in ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx"", source file \ExcelFiles\5Holter_U3.xlsm. Used total unit performance. Total Unit performance extended for full head range and limited based on PI data."

Notes: ASCANGAS 2015/2/5. KADAMEC 2015/2/6 Checked

Head (ft) Flow (cfs) Efficiency 91 361.58 0.2795 91 462.79 0.4368 91 564 0.5377 91 665.2 0.6078 91 766.41 0.6594 91 858.42 0.7065 91 966.06 0.7324 91 1058.07 0.7642 91 1165.72 0.7804 91 1257.72 0.8037 91 1364.45 0.8149 91 1472.1 0.824 91 0.8401 1564.1 99.25 377.62 0.2795 99.25 483.31 0.4368 99.25 589.01 0.5377 99.25 694.7 0.6078 99.25 800.4 0.6594 99.25 896.48 0.7065 99.25 1008.91 0.7324 99.25 1104.99 0.7642 99.25 1217.41 0.7804 99.25 1313.5 0.8037 99.25 1424.96 0.8149 99.25 1537.38 0.824 99.25 1633.47 0.8401 107.5 393 0.2795 107.5 503 0.4368 107.5 613 0.5377 107.5 723 0.6078 107.5 833 0.6594 107.5 933 0.7065 107.5 1050 0.7324 107.5 1150 0.7642 1267 107.5 0.7804 107.5 1367 0.8037 107.5 1483 0.8149 107.5 1600 0.824 0.8401 107.5 1700 108.5 394.82 0.2795 108.5 505.33 0.4368 108.5 615.84 0.5377 0.6078 108.5 726.36 108.5 836.87 0.6594 108.5 937.33 0.7065

108.5	1054.87	0.7324
108.5	1155.34	0.7642
108.5	1272.88	0.7804
108.5	1373.34	0.8037
108.5	1489.88	0.8149
108.5	1607.42	0.824
108.5	1707.89	0.8401
109.5	396.64	0.2795
109.5	507.66	0.4368
109.5	618.68	0.5377
109.5	729.69	0.6078
109.5	840.71	0.6594
109.5	941.64	0.7065
109.5	1059.72	0.7324
109.5	1160.65	0.7642
109.5	1278.73	0.7804
109.5	1379.66	0.8037
109.5	1496.73	0.8149
109.5	1614.82	0.824
109.5	1715.74	0.8401

Turbine Efficiency Curves

Plant: Holter

Name: U4_Total_UnitHD_Rev1

Description: "From PCS curves in ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx"", source file \ExcelFiles\5Holter_U4.xlsm. Used total unit performance. Total Unit performance extended for full head range and limited based on PI data."

Notes: ASCANGAS 2015/2/5. KADAMEC 2015/2/6 Checked

Head (ft)	Flow (cfs)	
91	354.22	0.2854
91	455.43	0.4439
91	556.64	0.5448
91	657.84	0.6146
91	759.05	0.6658
91	863.02	0.7027
91	966.06	0.7324
91	1058.07	0.7642
91	1150.08	0.791
91	1254.04	0.806
91	1357.09	0.8193
91	1472.1	0.824
91	1564.1	0.8401
91	1656.11	0.8545
99.25	369.93	0.2854
99.25	475.63	0.4439
99.25	581.32	0.5448
99.25	687.02	0.6146
99.25	792.71	0.6658
99.25	901.29	0.7027
99.25	1008.91	0.7324
99.25	1104.99	0.7642
99.25	1201.08	0.791
99.25	1309.65	0.806
00.20	1000.00	0.000

B-41

1417.27 1537.38 1633.47 1729.55 385 495 605 715 825 938 1050 1150 1250 1363 1475 1600 1700 1800 386.79 497.3 607.81 718.32 828.83 942.35 1054.87 1155.34 1255.8 1369.32 1481.84 1607.42 1707.89 1808.35 388.56 499.58 610.6 721.62 832.64 946.69 1059.72 1160.65 1261.57 1375.62	0.8193 0.824 0.8401 0.8545 0.2854 0.4439 0.5448 0.6146 0.6658 0.7027 0.7324 0.7642 0.791 0.806 0.8193 0.824 0.8401 0.8545 0.2854 0.4439 0.5448 0.6146 0.6658 0.7027 0.7324 0.7642 0.791 0.806 0.8193 0.824 0.4439 0.5448 0.6146 0.8545 0.2854 0.4439 0.5448 0.6146 0.8545 0.2854 0.4439 0.5448 0.6146 0.658 0.7027 0.7324 0.7642 0.791 0.806 0.4139 0.5448 0.6146 0.658 0.7027 0.7324 0.7642 0.791 0.806 0.4139 0.5448 0.6146 0.658 0.7027 0.7324 0.7642 0.791 0.806 0.4139 0.5448 0.6146 0.658 0.7027 0.7324 0.7642 0.791 0.806 0.8193
1160.65 1261.57	0.7642 0.791
	1537.38 1633.47 1729.55 385 495 605 715 825 938 1050 1150 1250 1363 1475 1600 1700 1800 386.79 497.3 607.81 718.32 828.83 942.35 1054.87 1155.34 1255.8 1369.32 1481.84 1607.42 1707.89 1808.35 388.56 499.58 610.6 721.62 832.64 946.69 1059.72 1160.65 1261.57 1375.62 1488.66 1614.82 1715.74

Generator Efficiency Curves

Plant: Holter Name: "U1,2,3,4_1.0_eff"

"Generator limited per "Generator info - JCummings.xlsx". Note: the Holter turbines are good for 14.5 MW. 1 MW row entry manually added. Changed to 1.0 eff as turbine efficiency now Description: includes gen eff"

Notes: BKROLAK 2015/1/14. KADAMEC 2015/1/21 Checked

Max Gen	erator Cap	acity	Generator Output (MW)	Efficiency
12	0	1		
12	1	1		
12	2.4	1		
12	4.8	1		
12	7.2	1		
12	9.6	1		
12	12	1		

Plant Flow Type

Plant: Holter Name: MaxCap Description: (Description) Notes: BKROLAK 2015/1/14. KADAMEC 2015/2/6 Checked

> Calendar Day Run at Peak Efficiency 1-Jan FALSE 31-Dec FALSE

Scenario Information for Black Eagle

Plant/Node	Physical Settings	Operation Settings	Generation Settings
Black Eagle	Base_ReReg	Base Base	

Physical Settings

Plant: Black Eagle Name: Base_ReReg Description: Base with Re Regulating option to all for ramping rates. Notes: ASCANGAS 2015/2/10. KADAMEC 2015/2/10 Checked Reservoir Storage: Base Reservoir Area: Monthly Evaporation: Tailwater Curve: Base Spillway Curve: Base Low Level Outlet: Alt. Spillway: Alt. Tailwater Curve: Ramp Rating Curve: Plant Options: Base_ReReg

Reservoir Storage

 Plant:
 Black Eagle

 Name:
 Base

 Description:
 "Base from ""3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls"" converted to acre-feet."

 Notes:
 BKROLAK 2015/1/12. ASCANGAS 2015/1/17 checked.

Elevation (ft) Volume (af) 3276 0

3277	18
3278	59
3279	107
3280	168
3281	238
3282	323
3283	415
3284	515
3285	629
3286	772
3287	953
3288	1184
3289	1469
3290	1819

Tailwater Curve

Plant: Name: Black Eagle

Base

Description: "Base from ""5 - Tailwater Rating Curves\BLE Powerhouse Tailwater.xls"". Second entry for 3238.5 and 3243.34 feet were removed from source data set to prevent duplicate flow entries."

Notes: BKROLAK 2015/1/19. ASCANGAS 2015/1/19 checked.

Elevation	(f f)	Flow (cfs)		
3230	0	11000 (013)		
3234	750			
3234.4	1000			
3235.7	2000			
3236.8	3000			
3237.8	4000			
3238.5	5000			
3238.85	10000			
3239.2	12000			
3239.45	14000			
3239.75	16000			
3240	18000			
3240.3	20000			
3240.55	22000			
3240.8	24000			
3241	26000			
3241.25	28000			
3241.5	30000			
3241.75	32000			
3241.95	34000			
3242.1	36000			
3242.24	38000			
3242.37	40000			
3242.5	42000			
3242.62	44000			
3242.74	46000			
3242.85	48000			
3242.95	50000			
3243.05	52000			
3243.15	54000			

3243.25	56000
3243.42	60000
3243.51	62000
3243.59	64000
3243.67	66000
3243.75	68000
3243.82	70000
3243.9	72000

Spillway Curve

Plant: Black Eagle

Name: Base

"Base from ""4 - Spillway discharge rating curves\BLE DISCHARGE CAPABILITY.xls"". Added waste gate crest elevation as 0 flow point." Description:

BKROLAK 2015/1/12. ASCANGAS 2015/1/17 checked. BKROLAK 2015/2/4. ASCANGAS 2015/2/5 checked. Notes:

Elevation	(ft)	Flow (cfs)
3267) O	()
3279	12712	
3280	16102	
3281	20339	
3282	25424	
3283	32203	
3284	38983	
3285	47458	
3286	56780	
3287	65763	
3288	76271	
3289	86780	
3290	99153	
3291	111017	
3292	125085	
3293	137288	
3294	153390	
3295	168644	
3296	185000	
3297	205172	
3298	225862	
3299	247782	
3300	272034	
3301	295763	
3302	317797	
3303	338136	
3304	359322	
3305	378448	

Plant Options

Plant: Black Eagle

Base_ReReg Name: Description:

ASCANGAS 2015/2/10. KADAMEC 2015/2/10 Checked Notes:

	Min Powerhouse Flow 0 3 FALSE	Plant Operation TypeDelinked - Owner TRUE 0 3290	Delinked - System	Target Unit Power (MW)	Full Pond Elev (ft)
*****	*****				
Operation Settings Plant: Black Eag Name: Base Description: Notes: BKROLA Spill Elevations: Target Elevations: Minimum Elevations: Weekly Drawdown: Water Withdrawals: Reservoir Fluctuatio Reservoir Fluctuatio Tailwater Ramping I Minimum Instantane Minimum Daily Aver Recreation Flow: Bypass Flow: Maximum Flow: Max Flow from Elev Flashboards:	Base conditions. K 2015/1/12. ASCANGAS 201 3290 3289.9 States an Limits: In Rates: Rates: Rates: Pous Flow: age Flow: 200Falls	5/1/19 checked. KADAMEC 2015/2/12 Ch	ecked again		
Spill Elevations Plant: Black Eau Name: 3290 Description: Notes: BKROLA					
	Calendar Day Elevation 1-Jan 3290 31-Dec 3290	n (ft)			
*****	****				
Target Elevations Plant: Black Ea Name: 3289.9 Description: Notes: BKROLA	•				
*****	****				
Minimum Elevations Plant: Black Ea Name: 3278 Description: Notes: BKROLA		elevation 1988 to 2014, from ""HDB BLK 15 5/1/19 checked.		lsx""	
			B - 46		

Calendar	Day	Elevation (ft)
1-Jan	3278	
31-Dec	3278	

Recreation Flows

Plant: Black Eagle Name: 200Falls

"Spill min 200cfs 9am-8pm on weekends/holidays Mem day to Labor day, except when Apr-Jun runoff into Canyon Ferr < 900 kaf (50% of 1961 to 1990 average) per ""Regulatory Description: Constraints.pdf""."

Notes: BKROLAK 2015/1/12. ASCANGAS 2015/1/20 checked.

Calendar	Day	Day of W	eek	Flow (cfs)	Start Hour	End Hour	Use Plant Discharge Only When PH Off	Use Custom Schedule
1-Jan	0	0	1	24	FALSE	FALSE	FALSE	
24-May	1	200	9	20	FALSE	FALSE	FALSE	
24-May	7	200	9	20	FALSE	FALSE	FALSE	
10-Sep	0	0	1	24	FALSE	FALSE	FALSE	

Generation Settings

Plant: Black Eagle

Name: Base

Description: Base with calculated common and estimated unit headlosses. Turbine data from Index test Aug 2004 with shape from original Hill Curves.

Notes: BKROLAK 2015/1/15. KADAMEC 2015/2/10 Checked Powerhouse Setup: Base_HillCurve Powerhouse Weekend Ops: Maintenance Schedule: Minimum Flow Unit: Plant Flow Type: MaxCap Limit Off Peak Gen:

Powerhouse Setup

Plant: Black Eagle Base_HillCurve Name: Description: Hill curves used for shaping. Gross head inputs. GenEffs used. Notes: BKROLAK 2015/2/4. KADAMEC 2015/2/9 Checked Dispatched: FALSE

> Unit Number Headloss Turbine Efficiency Generator Efficiency Gate Leakage ZeroHL U1-2-3 HillCurveAdjust 11pct "U1,2 7.25" 0 1 2 ZeroHL U1-2-3_HillCurveAdjust_11pct "U1,2_7.25" 0 ZeroHL U1-2-3_HillCurveAdjust_11pct U3_7.25 0 3

Turbine Efficiency Curves

Plant: Black Eagle U1-2-3_HillCurveAdjust_11pct Name:

"Shape of ""SMorganSmith Turbine Curves BE 1.pdf" adjusted to historical PI limits and daily operations data." Description: BKROLAK 2015/2/5. KADAMEC 2015/2/9 Checked Notes:

Head (ft)		Efficiency
47	795.02	0.775
47	1114.97	0.8
47	1454.3	0.815
47	1653.06	0.815
47	1803.34	0.804
47	1987.55	0.7991
48.5	807.61	0.775
48.5	1132.62	0.8
48.5	1477.33	0.815
48.5	1679.23	0.815
48.5	1831.89	0.804
48.5	2019.02	0.7991
50	820	0.775
50	1150	0.8
50	1500	0.815
50	1705	0.815
50	1860	0.804
50	2050	0.7991
51.5	832.21	0.775
51.5	1167.12	0.8
51.5	1522.33	0.815
51.5	1730.39	0.815
51.5	1887.69	0.804
51.5	2050	0.8
53	844.24	0.775
53	1184	0.8
53	1544.34	0.815
53	1755.4	0.815
53	1914.99	0.804
53	2050	0.801

Generator Efficiency Curves

Plant: Black Eagle Name: "U1,2_7.25"

Description: "Gen 3 from ""8 - Power Plant Eq Performance Data\Generator info - JCummings.xlsx""." Notes: BKROLAK 2015/1/14. KADAMEC 2015/2/9 Checked

Max Generator Capacity			Generator Output (MW)	Efficiency
7.25	0	0		
7.25	1.5	0.9439		
7.25	2.9	0.9696		
7.25	4.4	0.9773		
7.25	5.8	0.9805		
7.25	7.25	0.9819		

Generator Efficiency Curves

Plant: Black Eagle Name: U3_7.25 Description: "Gen 3 from ""8 - Power Plant Eq Performance Da

Description: "Gen 3 from ""8 - Power Plant Eq Performance Data\Generator info - JCummings.xlsx""." Notes: BKROLAK 2015/1/14. KADAMEC 2015/2/9 Checked

Max Ge	enerator Ca	apacity	Generator Output (MW)	Efficiency
7.25	0	0		
7.25	1.5	0.9403		
7.25	2.9	0.9676		
7.25	4.4	0.9757		
7.25	5.8	0.9792		
7.25	7.25	0.9806		

Plant Flow Type

 Plant:
 Black Eagle

 Name:
 MaxCap

 Description:
 Max Cap.

 Notes:
 BKROLAK 2015/2/4. KADAMEC 2015/2/9 Checked

Calendar Day Run at Peak Efficiency 1-Jan FALSE 31-Dec FALSE

Scenario Information for Rainbow

Plant/Node	Physical S	ettings	Operation Settings	Generation Settings
Rainbow Base_	ReReg	Base	Base_Post2013	

Physical Settings

Plant: Rainbow Base_ReReg Name: Base with Re Regulating option to all for ramping rates. Description: ASCANGAS 2015/2/10. KADAMEC 2015/2/10 Checked Notes: Reservoir Storage: Base Reservoir Area: Monthly Evaporation: Tailwater Curve: Base Spillway Curve: Base Low Level Outlet: Alt. Spillway: Alt. Tailwater Curve: Ramp Rating Curve: Plant Options: Base_ReReg

Reservoir Storage

Plant: Rainbow

Name: Base

Description: "Base from ""3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls"" converted to acre-feet." Notes: BKROLAK 2015/1/12. ASCANGAS 2015/1/17 checked.

> Elevation (ft) Volume (af) 3212 67 3213 116 3214 178

3215	265
3216	357
3217	452
3218	549
3219	648
3220	752
3221	866
3222	987
3223	1111
3224	1237
3225	1369

Tailwater Curve

Plant: Rainbow

Name: Base

Description: Temp holding table for tailwater. Dependent upon downstream Cochrane. Using median elevation of 3116 table entry for this input.

Notes: BKROLAK 2015/1/12. ASCANGAS 2015/1/17 checked.

> Elevation (ft) Flow (cfs) 3114 0 3116.02 3000 3116.03 3500 3116.04 4000 3116.05 4200 3116.05 4400 3116.05 4600 3116.06 4800 3116.06 5000 3116.07 5200 3116.08 5400 3116.13 7000 3116.17 8000 3116.26 10000 3116.37 12000 3116.57 15000 3116.77 17600 3116.98 20000 3117.46 25000 3117.99 30000 3118.56 35000 3119.15 40000

Spillway Curve

Plant: Rainbow

> Name: Base

"Spillway and waste gates from ""4 - Spillway discharge rating curves\RAI Discharge Capability.xls""." Description: BKROLAK 2015/1/12. ASCANGAS 2015/1/17 checked. Notes:

> Elevation (ft) Flow (cfs) 3191 0 3214 13846

3215	19615
3216	26923
3217	36538
3218	46923
3219	59615
3220	73077
3222	102308
3224	136154
3226	170000
3228	212308
3230	262692
3232	317308

Plant Options

Plant: Rainbow Name: Base_ReReg

Description: Base with Re-Reg option to all for ramping rates. Notes: ASCANGAS 2015/2/10. KADAMEC 2015/2/10 Checked

Min F	owerhouse F	low	Plant Op	eration	TypeDelinked - Owner	Delinked - System	Target Unit Power (MW)	Full Pond Elev (ft)
0	3	FALSE	TRUE	0	3224			

Operation Settings Plant: Rainbow Name: Base Description: Base conditions. BKROLAK 2015/1/12. ASCANGAS 2015/1/20 checked. KADAMEC 2015/2/12 Checked again Notes: Spill Elevations: 3224 Target Elevations: 3223.9 Minimum Elevations: 3199 Weekly Drawdown: Water Withdrawals: Reservoir Fluctuation Limits: Reservoir Fluctuation Rates: Tailwater Ramping Rates: Minimum Instantaneous Flow: Minimum Daily Average Flow: Recreation Flows: 200Falls Bypass Flow: Maximum Flow: 8000cfsWaterRights Max Flow from Elev: Flashboards:

Spill Elevations

 Plant:
 Rainbow

 Name:
 3224

 Description:
 "Base from ""Regulatory Constraints.pdf""."

 Notes:
 BKROLAK 2015/1/12. ASCANGAS 2015/1/19 checked.

Calendar Day Elevation (ft)

1-Jan 3224 31-Dec 3224

Target Elevations

 Plant:
 Rainbow

 Name:
 3223.9

 Description:
 Estimate for usable storage.

 Notes:
 BKROLAK 2015/1/12. ASCANGAS 2015/1/19 checked.

Calendar Day Elevation (ft) 1-Jan 3223.9

31-Dec 3223.9

Minimum Elevations

 Plant:
 Rainbow

 Name:
 3199

 Description:
 "Lowest observed historical end of day elevation 1988 to 2014, from ""HDB RNB 198801 to 201411.xlsx""."

 Notes:
 BKROLAK 2015/1/12. ASCANGAS 2015/1/19 checked.

Calendar Day Elevation (ft) 1-Jan 3199 31-Dec 3199

Recreation Flows

Plant: Rainbow

Name: 200Falls

Description: "Spill min 200cfs 9am-8pm on weekends/holidays Mem day to Labor day, except when Apr-Jun runoff into Canyon Ferr < 900 kaf (50% of 1961 to 1990 average) per "Regulatory Constraints.pdf"."

Notes: BKROLAK 2015/1/12. ASCANGAS 2015/1/20 checked.

Calendar	Day	Day of W	/eek	Flow (cfs)	Start Hou	r End Hour	Use Plant Discharge Only When PH Off	Use Custom Schedule
1-Jan	0	0	1	24	FALSE	FALSE	FALSE	
24-May	1	200	9	20	FALSE	FALSE	FALSE	
24-May	7	200	9	20	FALSE	FALSE	FALSE	
10-Sep	0	0	1	24	FALSE	FALSE	FALSE	

Maximum Flow

Plant: Rainbow

Name: 8000cfsWaterRights

Description: "Per cell comment in cell U9 of ""8 - Power Plant Eq Performance Data\Hydro Capacity-Limits Rev 9.xlsx"", sheet ""Generator"". Water rights limit confirmed in conference call and textual response from NWE found in email from Carrie Harris 1/22/2015 6:25pm (EST)."

Notes: BKROLAK 2015/1/15. BKROLAK 2015/2/12 Updated description. KADAMEC 2015/2/12 Checked

Calendar Day	Day of Week	Flow (cfs) Start Hour End Hour
1-Jan 0	8000 1	24
31-Dec 0	8000 1	24

Generation Settings

Plant: Rainbow

 Name:
 Base_Post2013

 Description:
 U9 online Mar 2013. PI data reduction for U9.

 Notes:
 BKROLAK 2015/1/23. KADAMEC 2015/2/10 Checked

 Powerhouse Setup:
 U9_PI

 Powerhouse Weekend Ops:
 Maintenance Schedule:

 Minimum Flow Unit:
 Plant Flow Type:

 MaxCap
 Limit Off Peak Gen;

Powerhouse Setup

 Plant:
 Rainbow

 Name:
 U9_PI

 Description:
 Unit online March 2013. From PI data reduction.

 Notes:
 BKROLAK 2015/1/23. KADAMEC 2015/2/9 Checked

 Dispatched:
 FALSE

Unit Number Headloss Turbine Efficiency Generator Efficiency Gate Leakage 1 1unit_Post2013 U9_PI U9_Extended 0

Turbine Efficiency Curves

Plant: Rainbow

Name: U9_PI

Description: "PI data reduction from hourly power and flow, from ""RNB PI Avg Hourly.xlsx""." Notes: BKROLAK 2015/1/23. ASCANGAS 2015/2/5 checked.

> Head (ft) Flow (cfs) Efficiency 101 2384.98 0.8773 101 2931.16 0.8983 101 3908.21 0.9272 101 4885.26 0.9332 101 5862.31 0.9281 101 6839.37 0.9088 101 7816.42 0.8943 101 7962.98 0.894 103.4 2413.15 0.8773 103.4 2965.78 0.8983 103.4 3954.37 0.9272 103.4 4942.96 0.9332 103.4 5931.56 0.9281 6920.15 0.9088 103.4 103.4 7908.74 0.8943 8057.03 0.894 103.4 105.8 2441 0.8773 3000 0.8983 105.8 105.8 4000 0.9272 105.8 5000 0.9332 0.9281 105.8 6000 105.8 7000 0.9088 105.8 8000 0.8943 105.8 8150 0.894

108.4	2470.81	0.8773
108.4	3036.64	0.8983
108.4	4048.85	0.9272
108.4	5061.06	0.9332
108.4	6073.28	0.9281
108.4	7085.49	0.9088
108.4	8097.7	0.8943
108.4	8249.53	0.894
111	2500.27	0.8773
111	3072.84	0.8983
111	4097.12	0.9272
111	5121.4	0.9332
111	6145.68	0.9281
111	7169.96	0.9088
111	8194.24	0.8943
111	8347.88	0.894

Generator Efficiency Curves

Plant: Rainbow

Name: U9_Extended

Description: "U9 following the Andritz data from "8 - Power Plant Eq Performance Data\Generator info - JCummings.xlsx"."

Notes: BKROLAK 2015/1/15. CDOE 2015/1/20. KADAMEC 2015/1/21 Checked. ASCANGAS 2015/1/22 extended to historical maximum output based on available PI data. KADAMEC 2015/2/9 Checked

Max Gen	erator Cap	acity	Generator Output (MW)	Efficiency
64.16	0	0		
64.16	11.79	0.954		
64.16	23.58	0.9739		
64.16	35.37	0.9799		
64.16	47.16	0.9824		
64.16	58.95	0.9833		
64.16	64.16	0.9833		

Plant Flow Type

Plant: Rainbow Name: MaxCap Description: (Description) Notes: BKROLAK 2015/1/15. KADAMEC 2015/2/9 Checked

> Calendar Day Run at Peak Efficiency 1-Jan FALSE 31-Dec FALSE

Scenario Information for Cochrane

Plant/Node Physical Settings Operation Settings Generation Settings Cochrane Base_ReReg Base Base

Physical Settings

Plant: Cochrane

Name: Base_ReReg Description: Base with Re Regulating option to all for ramping rates and with tailwater curve based on historical data. Notes: ASCANGAS 2015/2/10. KADAMEC 2015/2/10 Checked Reservoir Storage: Base Reservoir Area: Monthly Evaporation: Tailwater Curve: Historical Spillway Curve: Base Low Level Outlet: Alt. Spillway: Alt. Tailwater Curve: Ramp Rating Curve: Plant Options: Base_ReReg

Reservoir Storage

Plant: Cochrane

Name: Base

Description: "Base with 3116 entry removed for increasing volume with increasing elevation. From ""3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls" converted to acre-feet."

Notes: BKROLAK 2015/1/12. ASCANGAS 2015/1/16 checked.

Elevation 3090 3091 3092 3093 3094 3094.8 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3115.8 3117	3961 4118 4274 4431 4588 4707 4746 905 5064 5224 5385 5546 5712 5877 6044 62569 6756 6948 7146 7351 7777 7999 8228 8464 8777 8793	Volume (af)
3118	9053	

3119	9320
3120	9671

Tailwater Curve

Plant: Cochrane

Name: Historical

"Revised from Base from ""5 - Tailwater Rating Curves\COC TW EVALUATION.xls"" to align with historical data from ""CCH PI Avg Hourly.xlsx"." Description:

Notes: KADAMEC 2015/1/21. BKROLAK 2015/1/22 Checked

> Elevation (ft) Flow (cfs) 3032 0 3032.39 1156.13 3034 1850 3036 5000 3037 10000 3037.4 15669.56 3037.85 40000 3038.07 60000

Spillway Curve

Plant: Cochrane

Name: Base

"Base from ""4 - Spillway discharge rating curves\CCH DISCHARGE CAPABILITY.xls"". Flow capacity capped at 190,000 cfs, prior to changeover to orifice flow." Description:

Notes: BKROLAK 2015/1/12. KADAMEC 2015/2/10 Checked

Flow (cfs)

Plant Options

Plant: Cochrane

Name: Base_ReReg

DN: Base with Re-Reg option to all for ramping rates. ASCANGAS 2015/2/10. KADAMEC 2015/2/10 Checked Description:

Notes:

Min Powerhouse Flow

Plant Operation TypeDelinked - Owner

B - 56

Delinked - System Target Unit Power (MW)

Full Pond Elev (ft)

Operation	n Settings				
	Plant:	Cochrane			
	Name:	Base			
	Descriptio		Base con	dition post	Rainbow upgrade.
	Notes:		(2015/1/	12. ASCA	NGAS 2015/1/20 checked. KADAMEC 2015/2/12 Checked again
	Spill Eleva		3120		· · · · · · · · · · · · · · · · · · ·
		vations:			
		Elevations			
	Weekly D		00		
	Water Wit				
		Fluctuation	n Limits [.]		
		Fluctuation			
		Ramping F			
		Instantane			
		Daily Avera			
	Recreation		5		
	Bypass Fl				
	Maximum				
		from Elev:			
	Flashboar	ds [.]			
	Name: Descriptio Notes:				awings\8_Cochrane\P-2188-1060, F-27, Cochrane Spillway Sections & Rating Curve, 09-27-2000.TIF""." NGAS 2015/1/19 checked.
			Calendar	Dav	Elevation (ft)
			1-Jan	3120	
			31-Dec	3120	
			0.200	0.20	
*********	************	***********	******		
Target El	evations				
	Plant:	Cochrane			
	Name:	3119.8			
	Descriptio				for peaking post Rainbow upgrade.
	Notes:	BKROLA	(2015/1/	12. KADAI	MEC 2015/2/12 Checked
				D	
			Calendar		Elevation (ft)
			1-Jan	3119.8	
			31-Dec	3119.8	
******	******	*********	*******		
		**********	******		
Minimum	Elevations	On altern to			
Minimum	Plant: Name:	Cochrane 3110			

Description: "10 foot peaking pool from ""Cochrane License Application Exhibit B Excerpt.pdf""." Notes: BKROLAK 2015/1/12. ASCANGAS 2015/1/19 checked.

Calendar Day		Elevation (ft)
1-Jan	3110	
31-Dec	3110	

Generation Settings

 Plant:
 Cochrane

 Name:
 Base

 Description:
 "Unit performance from index tests conducted in 2005, and extended for full operational head range."

 Notes:
 BKROLAK

 2015/1/15.
 KADAMEC 2015/2/10 Checked

 Powerhouse Setup:
 Base_HD_Final

 Powerhouse Weekend Ops:

 Maintenance Schedule:

 Minimum Flow Unit:

 Plant Flow Type:
 MaxCap

 Limit Off Peak Gen:

Powerhouse Setup

 Plant:
 Cochrane

 Name:
 Base_HD_Final

 Description:
 "Unit performance from index tests conducted in 2005, Lower bound of turbine inputs extended. Rev2 turbines added 2015-02-03."

 Notes:
 BKROLAK 2015/1/15. KADAMEC 2015/1/21 Checked. BKROLAK 2015/1/22. KADAMEC 2015/2/9 Checked

 Dispatched:
 FALSE

Unit Ni	umber	Headloss Turbin	e Efficiency	Generator Efficiency G	ate Leakage
1	2units	U1_HD_Rev1	"U1,2"	0	-
2	2units	U2_HD_Rev1	"U1,2"	0	

Turbine Efficiency Curves

Plant: Cochrane

Name: U1_HD_Rev1

Description: "From "Cochrane Index testing\Index Test Report.pdf" with performance calibrated to hisotircal PI and daily records." Notes: BKROLAK 2015/2/3. ASCANGAS 2015/2/5. KADAMEC 2015/2/9 Checked

Head (ft)	Flow (cfs)	Efficiency
73	1820.32	0.836
73	2217.61	0.858
73	2992.22	0.87
73	3707.51	0.868
73	4513.17	0.853
73	5152.13	0.822
76.5	1863.45	0.836
76.5	2270.15	0.858
76.5	3063.11	0.87
76.5	3795.35	0.868
76.5	4620.09	0.853
76.5	5274.2	0.822
80	1905.6	0.836
80	2321.5	0.858
80	3132.4	0.87
80	3881.2	0.868

80	4724.6	0.853
80	5393.5	0.822
81	1917.47	0.836
81	2335.96	0.858
81	3151.92	0.87
81	3905.38	0.868
81	4754.04	0.853
81	5427.1	0.822
82	1929.27	0.836
82	2350.34	0.858
82	3171.31	0.87
82	3929.42	0.868
82	4783.29	0.853
82	5460.5	0.822

Turbine Efficiency Curves

Plant: Cochrane

Name: U2_HD_Rev1

Description: "From "Cochrane Index testing\Index Test Report.pdf" with performance calibrated to hisotircal PI and daily records." Notes: BKROLAK 2015/2/3. KADAMEC 2015/2/9 Checked

76.5 76.5 76.5 76.5 76.5 80 80 80 80 80 80 80 80 80 80 80 80 80	Flow (cfs) 1390.75 1844.2 2470.85 3292.84 4026.37 4863.84 5560.69 1423.7 1887.9 2529.39 3370.85 4121.77 4979.07 5692.44 1455.9 1930.6 32467.1 4215 5091.7 5821.2 1464.97 1942.63 2602.72 3468.58 2602.72 3468.58 5123.42 5123.42 5857.47 1473.99	0.801 0.873 0.88 0.8745 0.869 0.838 0.784 0.801 0.873 0.88 0.8745 0.869 0.838 0.784 0.8745 0.869 0.838 0.784 0.8745 0.869 0.838 0.784 0.8745 0.869 0.838 0.8745 0.869 0.838 0.8745 0.869 0.838 0.8745 0.869 0.838 0.8745 0.869 0.838 0.8745 0.869 0.838 0.8745 0.869 0.838 0.8745 0.869 0.874 0.873 0.874 0.874 0.873 0.874 0.874 0.873 0.874 0.874 0.874 0.874 0.874 0.873 0.874 0.888 0.8745 0.888 0.83800 0.838000 0.8380000000000
82 82	1473.99 1954.58	0.801 0.873
82	2618.73	0.88

82	3489.92	0.8745
82	4267.36	0.869
82	5154.95	0.838
82	5893.52	0.784

Generator Efficiency Curves Plant: Cochrane

Name: "U1,2"

"From ""8 - Power Plant Eq Performance Data\Generator info - JCummings.xlsx""." Description: BKROLAK 2015/1/15. KADAMEC 2015/1/21 Checked Notes:

Max Generator Capacity			Generator Output (MW)	Efficiency
35.5	0	0		-
35.5	7.1	0.9539		
35.5	14.2	0.9747		
35.5	21.3	0.9809		
35.5	28.4	0.9836		
35.5	35.5	0.9847		

Plant Flow Type

Plant: Cochrane Name: MaxCap (Description) Description: Notes: BKROLAK 2015/1/22. KADAMEC 2015/2/9 Checked

> Calendar Day Run at Peak Efficiency 1-Jan FÁLSE 31-Dec FALSE

Scenario Information for Ryan

Plant/No	de Physi	cal Settings	Operation Settings	Generation Settings
Ryan	Base_ReReg	Base	Base_Post2013	

Physical Settings

Plant: Ryan Name: Base_ReReg Description: Base with Re Regulating option to all for ramping rates. Notes: BKROLAK 2015/1/13. KADAMEC 2015/2/10 Checked Reservoir Storage: Base Reservoir Area: Monthly Evaporation: Tailwater Curve: Base Spillway Curve: Base Low Level Outlet: Alt. Spillway: Alt. Tailwater Curve: Ramp Rating Curve: Plant Options: Base_ReReg

Reservoir Storage

Plant: Ryan

Name: Base

Description: "Base from ""3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls" converted to acre-feet."

Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/16 checked.

Elevation	(ft)	Volume (af)
3020	1213	
3021	1338	
3022	1465	
3023	1594	
3024	1723	
3025	1854	
3026	1985	
3027	2123	
3028	2262	
3029	2403	
3030	2548	
3031	2697	
3032	2847	
3033	3000	
3034	3157	
3035	3317	
3036	3484	
3037	3653	
3038	3825	
3039	4004	
3040	4243	

Tailwater Curve

Plant: Ryan

Name: Base

Description: "Base from ""5 - Tailwater Rating Curves\RYN Powerhouse Tailwater.xls""." Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/17 checked.

Elevation	(ft)	Flow (cfs)
2883.7	400	()
2884.2	800	
2884.8	1200	
2885.1	1600	
2885.6	2000	
2886.1	2400	
2886.5	2800	
2887	3200	
2887.4	3600	
2888	4000	
2888.3	4400	
2888.8	4800	
2889.2	5200	
2889.6	5600	
2890	6000	

B - 61

2890.3 2891.2 2893.9 2893.8 2894 2895.1 2895.4 2896.1 2897.9 2897.9 2898.9 2899.05 2899.05 2899.05 2899.05 2899.09 2900.1 2900.3 2900.9 2901.1 2902.3 2902.3 2902.3 2903.05 2903.5 2904	6400 7200 8000 9200 10000 12000 12800 14000 15200 16000 16800 18800 18800 18800 18800 20000 21200 22000 22000 23200 24800 24800 26000
2905 2905.6 2906.6 2907.6 2908.4 2909.70 2910.36 2910.36 2910.95 2911.51 2912.05 2913.06 2913.06 2913.06 2913.09 2914.43 2914.85 2915.26 2915.66 2915.66 2916.04 2916.78 2917.13	26800 28000 28000 34000 34000 36000 40000 42000 44000 44000 48000 52000 55000 55000 56000 56000 66000 64000 66000 68000 72000 72000

Spillway Curve Plant: Ryan

Name: Base

Description: "Base with low level outlet, waste gates and spillways from ""4 - Spillway discharge rating curves\RYN DISCHARGE CAPABILITY.xls"" with plant flow removed and 0 flow value set at centerline of low level outlet per ""1 - Drawings\9_Ryan\P-2188-1070, F-14, Ryan Waste Gate Plan, Section. Detail & Rating Curve, 09-27-2000.TIF""."

Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/17 checked.

Elevation	(ft)	Flow (cfs)
2971	0	
3023	14100	
3024	18385.71	
3025	19100	
3026	26957.14	
3027	28385.71	
3028	35528.57	
3029	38385.71	
3030	44528.57	
3031	51242.86	
3033	55528.57	
3034	64100	
3035	66957.14	
3036	77671.43	
3037	79814.29	
3038	92671.43	
3039	93385.71	
3040	107480.28	-
3041	122973.24	-
3041.6	124381.69	-
3042	140578.87	
3043	142691.5	5

Plant Options

Plant: Ryan Name: Base_ReReg

Description: Base with Re-Reg option to all for ramping rates. Notes: BKROLAK 2015/2/10. KADAMEC 2015/2/10 Checked

Min Powe	erhouse Flo	W	Plant Ope	eration	TypeDelinked - Ownei	Delinked - System	Target Unit Power (MW)	Full Pond Elev (ft)
0	3	FALSE	TRUE	0	3037			

Operation Settings

 Plant:
 Ryan

 Name:
 Base

 Description:
 Base conditions.

 Notes:
 BKROLAK 2015/1/13. ASCANGAS 2015/1/19 checked.

 Spill Elevations:
 3037

 Target Elevations:
 3036.8

 Minimum Elevations:
 3018.6

 Weekly Drawdown:
 Water Withdrawals:

 Reservoir Fluctuation Limits:
 Reservoir Fluctuation Limits:

 Reservoir Fluctuation Rates:
 Tailwater Ramping Rates:

 Minimum Instantaneous Flow:
 Kenter

Minimum Daily Average Flow: Recreation Flows: 200Falls Bypass Flow: Maximum Flow: Max Flow from Elev: Flashboards:

Spill Elevations

Plant: Ryan Name: 3037

Description: "Top of flashboards per ""1 - Drawings\9_Ryan\P-2188-1067, F-11, Ryan Spillway Plan, Section & Details, Rating Curve, 09-27-2000.PDF""."

Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/19 checked.

Calendar Day Elevation (ft) 1-Jan 3037 31-Dec 3037

Target Elevations

 Plant:
 Ryan

 Name:
 3036.8

 Description:
 Two tenths of a foot below full pool.

 Notes:
 ASCANGAS 2015/1/25. KADAMEC 2015/2/12 Checked

Calendar Day Elevation (ft) 1-Jan 3036.8 31-Dec 3036.8

Minimum Elevations

 Plant:
 Ryan

 Name:
 3018.6

 Description:
 "Lowest observed 1988 to 2014 from ""HDB RYN 198801 to 201411.xlsx""."

Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/19 checked.

Calendar Day Elevation (ft) 1-Jan 3018.6 31-Dec 3018.6

Recreation Flows

Plant: Ryan

Name: 200Falls

Description: "Spill min 200cfs 9am-8pm on weekends/holidays Mem day to Labor day, except when Apr-Jun runoff into Canyon Ferr < 900 kaf (50% of 1961 to 1990 average) per "Regulatory Constraints.pdf"."

Notes: BKROLAK 2015/1/12. ASCANGAS 2015/1/20 checked.

Calendar Day	Day of V	Neek	Flow (cfs)	Start Hou	ir End Hour	Use Plant Discharge Only When PH Off	Use Custom Schedule
1-Jan 0	0	1	24	FALSE	FALSE	FALSE	
24-May 1	200	9	20	FALSE	FALSE	FALSE	
24-May 7	200	9	20	FALSE	FALSE	FALSE	

B - 64

10-Sep 0 FALSE FALSE FALSE 0 1 24

Generation Settings

Plant: Ryan Name: Base Post2013 Description: "Turbines are generator limited. Post upgrade of units 2, 4, 5." Notes: BKROLAK 2015/1/16. ASCANGAS 2015/1/22. KADAMEC 2015/2/10 Checked Powerhouse Setup: Base_Post2013_Rev1 Powerhouse Weekend Ops: Maintenance Schedule: Minimum Flow Unit: Plant Flow Type: MaxCap Limit Off Peak Gen:

Powerhouse Setup

Plant: Ryan

Base_Post2013_Rev1 Name:

Description: "6 unit powerhouse. No headloss component. Ryan runner upgrades - #2 in 12/2012, #4 in 3/2012, #5 in 12/2013. Comments from assessments state gate leakage exists. Older unit efficiencies reduced to calibrate to historical PI and daily operations data."

Notes: ASCANGAS 2015/2/5. KADAMEC 2015/2/9 Checked Dispatched: FALSE

Unit Number Headloss Turbine Efficiency Generator Efficiency Gate Leakage 6units "U1.6 Rev1" "U1.3.6 10.2" 1 0 2 6units "U2,4,5_Rev1" "U2,4,5_12" 0 3 6units U3 Rev1 "U1.3.6 10.2" 0 4 6units "U2,4,5 Rev1" "U2,4,5 12" 0 "U2,4,5 12" 5 6units "U2,4,5 Rev1" 0 6 6units "U1,6 Rev1" "U1,3,6 10.2" 0

Turbine Efficiency Curves

Plant: Ryan

"U1.6 Rev1" Name:

"Units 1, 6. Representing 13,500 (U3, 6) and 15,000 (U1) HP turbines. Data computed from PCS curves in ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx"". U 3 has Description: same turbine but is limited operation below 9MW due to vibration per ""8 - Power Plant Eq Performance Data\Performance Verification Data\Important Operational Information on Ryan #3.msg". Efficiency reduced to calibrate to historic."

Notes: ASCANGAS 2015/2/6. KADAMEC 2015/2/9 Checked

> Head (ft) Flow (cfs) Efficiency 135 231.48 0.3463 135 298.84 0.473 135 369.99 0.5745 135 443.04 0.6391 135 517.03 0.6858 135 591.98 0.7191 135 667.87 0.7443 135 743.77 0.7642 135 819.66 0.7807 135 896.51 0.7934 135 977.14 0.8011

> > B - 65

142.5 307.02 0.47 142.5 380.12 0.57 142.5 455.18 0.63 142.5 531.2 0.68 142.5 608.2 0.71 142.5 686.17 0.74 142.5 641.5 0.76 142.5 642.12 0.78 142.5 921.07 0.79 142.5 1003.92 0.80 150 244 0.34 150 315 0.47 150 390 0.57 150 467 0.63 150 545 0.68 150 545 0.68 150 624 0.74 150 704 0.74 150 704 0.74 150 704 0.74 150 704 0.74 150 393.24 0.57 152.5 393.24 0.57 152.5 549.52 0.68 152.5 592.84 0.79 152.5 790.51 0.76 152.5 790.51 0.76 152.5 320.21 0.47 155 320.21 0.47 155 320.21 0.47 155 554.01 0.68 155 548.0 0.76 155 574.01 0.68 155 548.0 0.76 155 574.01 0.68 155 574.01 0.68 155 574.01 0.68 155 574.01 0.68 155 796.96	5745 6391 6858 7191 7443 7642 7807 7934 8011 3463 473 5745 6391 6858 7191 7443 7642 7807 7934 8011 3463 473 5745 6391 6858 7191 7443 7642 7807 7934 8011 3463 473 5745 6391 6858 7191 7443 77934 8011 3463 77934 8011 3463 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8011 7443 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8077 77934 8011 3463 8077 77934 8011 3463 8077 77934 8011 3463 8077 77934 8011 3463 8077 77934 8011 8077 77934 8011 8077 77934 8077 77934 8011 8077 77934 8011 8077 77934 80777 7794 8077 77974 77977 77974 779777 77977 77977 77977 7777 7777 77777 77777 777777 7777
---	--

Turbine Efficiency Curves

Plant: Ryan

Name: "U2,4,5_Rev1"

Description: "Unit 2, 4, 5. 17,800 HP units. Ryan runner upgrades - #2 in 12/2012, #4 in 3/2012, #5 in 12/2013. Per ""8 - Power Plant Eq Performance Data\Major operational upgrades.docx". Computations from PCS curves in ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx". Calibrated to historical PI and daily operations data." Notes: ASCANGAS 2015/2/6. KADAMEC 2015/2/9 Checked

Head (ft) Flow (cfs) Efficiency

155	660.74	0.8113
155	742.07	0.8254
155	813.22	0.8478
155	955.54	0.8829
155	1026.7	0.8968
155	1118.18	0.8918

Turbine Efficiency Curves

****** Plant: Ryan

Name: U3_Rev1

"Unit 3. Representing 13,500 (U3) HP turbine. Data computed from PCS curves in "8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx"". U 3 has same turbine as U6 but Description: is limited operation below 9MW due to vibration per 108 - Power Plant Eq Performance Data/Performance Verification Data/Important Operational Information on Ryan #3.msg11. 916 cfs at rated head equals 9MW generator output. With Efficiency reduced to calibrate to historical operations data."

Notes: ASCANGAS 2015/2/6. KADAMEC 2015/2/9 Checked

Head (ft)	Flow (cfs)	Efficiency
135	869.45	0.789
135	896.51	0.7934
135	977.14	0.8011
142.5	893.28	0.789
142.5	921.07	0.7934
142.5	1003.92	0.8011
150	916	0.789
150	945	0.7934
150	1030	0.8011
152.5	924.09	0.789
152.5	952.84	0.7934
152.5	1038.55	0.8011
155	931.63	0.789
155	960.62	0.7934
155	1047.03	0.8011

Generator Efficiency Curves

Plant: Ryan

Name: "U1,3,6_10.2"

"From curves in "8 - Power Plant Eq Performance Data\Generator info - JCummings.xlsx"". 0.9MW entry added for smoothing turbine efficiencies." Description:

Notes: BKROLAK 2015/1/16. KADAMEC 2015/1/21 Checked

Max Ge	nerator Ca	apacity	Generator Output (MW)	Efficiency
10.2	0	0		-
10.2	0.9	0.8		
10.2	2	0.9614		
10.2	4.1	0.9793		
10.2	6.1	0.9846		
10.2	8.2	0.9869		
10.2	10.2	0.9879		

Generator Efficiency Curves

Plant: Ryan Name: "U2,4,5_12"

Description: "From curves in ""8 - Power Plant Eq Performance Data\Generator info - JCummings.xlsx"". U2 rewound 1989, U4 rewound 2009. Values for 0.9MW and 1.9MW added for turbine efficiency smoothing. Unit 5 simulated with this generator based on Pl data."

Notes: BKROLAK 2015/1/16. KADAMEC 2015/1/21 Checked

Max G	enerator C	apacity	Generator Output (MW)	Efficiency
12	0	0		
12	0.9	0.86		
12	1.9	0.89		
12	2.4	0.9625		
12	4.8	0.9798		
12	7.2	0.9849		
12	9.6	0.9871		
12	12	0.988		

Plant Flow Type

 Plant:
 Ryan

 Name:
 MaxCap

 Description:
 Max Capacity option.

 Notes:
 BKROLAK 2015/1/16. KADAMEC 2015/2/9 Checked

Calendar Day Run at Peak Efficiency 1-Jan FALSE 31-Dec FALSE

Scenario Information for Morony

 Plant/Node
 Physical Settings
 Operation Settings
 Generation Settings

 Morony
 Base_ReReg
 Base
 Base

Physical Settings

 Plant:
 Morony

 Name:
 Base_ReReg

 Description:
 Base conditions with ReRegulating option and with tailwater curve based on historical data.

 Notes:
 BKROLAK 2015/1/13. ASCANGAS 2015/1/17 checked. KADAMEC 2015/1/21. BKROLAK 2015/1/22 TW Checked. KADAMEC 2015/2/10 Checked

Reservoir Storage: Base Reservoir Area: Monthly Evaporation: Tailwater Curve: Historical Spillway Curve: Base Low Level Outlet: Alt. Spillway: Alt. Tailwater Curve: Ramp Rating Curve: Plant Options: Base_ReReg

Reservoir Storage

Plant: Morony Name: Base

Description: "Base from ""3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls"" converted to acre-feet." Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/16 checked.

Elevation 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873	(ft) 6003 6291 6578 6866 7153 7443 7733 8022 8312 8601 8891 9181 9470	Volume (af)
2873 2874	9470 9760	
2875	10049	
2876	10341	
2877	10632	
2878 2879	10924 11216	
2880	11210	
2881	11801	
2882	12096	
2883	12394	
2884	12693	
2885	12995	
2886 2887	13296 13598	
2888	13899	
2889	14201	
2890	14502	

Tailwater Curve

Plant: Morony

Name: Historical

Description: "Elevation lowered by 2" for the same flows from "5 - Tailwater Rating Curves/MNY Powerhouse Tailwater.xls" to align with historical data reported in ""MRN PI Avg Hourly.xlsx"".

Notes: KADAMEC 2015/1/21. BKROLAK 2015/1/22 Checked.

Flow (cfs)

Elevation	ı (ft)
2799) O
2800.55	2000
2801.4	4000
2802	6000
2802.41	8000
2802.78	10000
2803.05	12000
2803.34	14000
2803.56	16000
2803.8	18000

B - 70

2804	20000
2804.13	22000
2804.3	24000
2804 42	26000
2804 58	28000
2804.30	30000
2804.7	32000
2804.8	34000
200 1100	0.000
2805.02	36000
2805.11	38000
2805.19	40000
2805.27	42000
2805.34	44000
2805.41	46000
2805.48	48000
2805.54	50000
2805.61	52000
2805.67	54000
2805.73	56000
2805 78	58000
2805 84	60000
2805.89	62000
2805.94	64000
2805.99	66000
2806.03	68000
2000.00	
2806.08	70000
2806.13	72000

Spillway Curve

Plant: Morony

Name: Base

Description: "E

"Base condition computed from Trash Gate capacity and 9 radial gate capacities. From ""4 - Spillway discharge rating curves\MNY DISCHARGE CAPABILITY.xls"""

Notes: BKROLAK 2015/1/19. KADAMEC 2015/2/10 Checked

(ft)	Flow (cfs)
0	
900	
2700	
9450	
18000	
28890	
41400	
54900	
70200	
87426	
150945	
160662	
169163	
177521	
	0 900 2700 9450 18000 28890 41400 54900 70200 87426 150945 160662 169163

Plant Options

Na De	lant: Morony ame: Base_Re escription: otes: BKROLA	eReg Reregulati \K 2015/1/1		GAS 2015	/1/17 che	cked.						
			rhouse Flow 3	/ FALSE		eration Ty 0	ypeDelinked - Owne 2888	r Delir	nked - System	Target Unit Pow	ver (MW)	Full Pond Elev (ft)
Operation Se Pl Na De	lant: Morony ame: Base escription:	Base oper					ximum drawdown d ROLAK 2015/2/12 I	•	• •	SCANGAS 2015/2	2/12 checked.	
Ta Mi W W R R R R Mi Mi R R Mi Mi Mi	pill Elevations: arget Elevations: inimum Elevation /eekly Drawdown: /ater Withdrawals eservoir Fluctuatio ailwater Ramping linimum Instantan inimum Daily Ave ecreation Flows: ypass Flow: lax Flow from Elev lashboards:	: on Limits: on Rates: Rates: eous Flow: rage Flow:	Base									
Spill Elevatio Pl Na De	lant: Morony ame: 2888 escription:	"Maximum AK 2015/1/1: Calendar [3. ASCANO	luring rere GAS 2015 Elevation	/1/19 che	seload op cked.	erations per ""Regu	latory Cor	nstraints.pdf"".'			
Target Eleva Pl Na	lant: Morony ame: 2886.2	****	2888									
	escription: otes: BKROL/	AK 2015/1/13 Calendar [3. Checked Day 2886.2		EC 2015/1		ns, ""HDB MRN 198	801 to 20)1411.xlsx""."			

Minimum Elevations

 Plant:
 Morony

 Name:
 2878

 Description:
 "Minimum drawdown during reregulating operations per ""Regulatory Constraints.pdf""."

 Notes:
 BKROLAK
 2015/1/13.
 ASCANGAS 2015/1/19 checked.

Calendar Day Elevation (ft) 1-Jan 2878 31-Dec 2878

Tailwater Ramping Rates

Plant: Morony

Name: Base

Description: "Per ""NWEhydrooperationsplan.docx"". 6) 10pct diff from inflow to BLE (MRN outflow plus delta storage BLE, RNB, CCH, RYN, MRN). 7) Highest hourly flow to lowest hourly flow is no more than sum of 15pct of previous day"s average flow and difference between highest and lowest inflows to BLE for yesterday or today. 8) hourly average flow change no more than 7.5pct."

Notes: BKROLAK 2015/2/12. ASCANGAS 2015/2/12 checked.

Min/May	Houly Min/Max Differ		Constrained by Stage rence Reference Plant		Calendar Day Hourly Rate Up (units		its/hr) Daily Rate Up (units/day)		Hourly Rate Down	(units/hr)	Daily Rate Down (units/day)	Use Hrly		
IVIII //IVIAX		FALSE	1	0.075	0.1 (0.075	0.1	TRUE	0.15	6				
*******	******	******												
Generatio	on Settings Plant: Morony Name: Base Description: Notes: BKROLA Powerhouse Setup: Powerhouse Weeke Maintenance Sched Minimum Flow Unit: Plant Flow Type: Limit Off Peak Gen:	Base end Ops: lule: MaxCap		MEC 2015/	2/10 Checke	d								
*******	******	*******												
Powerhou	Plant: Morony Name: Base Description:				1/21 Checker Turbine Effi		Generat	or Efficiency	v Gate Les	akana				
		0mt Num 1 2	2units 2units 2units	U1 U2	"U1,2_25" ("U1,2_25" ("U1,2_25" (0	General		y Gale Lea	акаде				
********	*****	*******												
Turbine E	fficiency Curves Plant: Morony													

Name: U1

Description: "Unit 1 from PCS curves ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx"". From ""10Morony_U1.xlsm""."

Notes: BKROLAK 2015/1/16. KADAMEC 2015/1/21 Checked

Turbine Efficiency Curves

Plant: Morony

Name: U2

Description: "Unit 2 from PCS curves ""8 - Power Plant Eq Performance Data\PCS_MW_vs_Flow_GUptmor.xlsx"". From ""10Morony_U2.xlsm""."

Notes: BKROLAK 2015/1/16. KADAMEC 2015/1/21 Checked

Head (ft)	Flow (cfs)	Efficiency
67	601.97	0.354
67	700.8	0.4865
67	799.63	0.5329
67	898.46	0.6181
67	965.84	0.704
67	1072.76	0.756
67	1197.65	0.7854
67	1325.23	0.8063
67	1450.11	0.8241
67	2191.34	0.8968
67	2318.92	0.9032
67	2443.81	0.9099
67	2566.9	0.9165
67	2698.97	0.9194
67	2852.61	0.9151
67	3018.82	0.9077
67	3213.79	0.893
67	3458.17	0.8673
67	3766.34	0.8307
67	4357.53	0.7478
75	636.89	0.354
75	741.46	0.4865
75	846.02	0.5329
75	950.59	0.6181
75	1021.88	0.704
75	1135	0.756
75	1267.13	0.7854
75	1402.11	0.8063
75	1534.25	0.8241
75	2318.48	0.8968
75	2453.46	0.9032
75	2585.59	0.9099
75	2715.83	0.9165
75	2855.56	0.9194
75	3018.11	0.9151
75	3193.97	0.9077
75	3400.25	0.893
75	3658.81	0.8673
75	3984.86	0.8307
75	4610.34	0.7478
83	670	0.354
83	780	0.4865
83	890	0.5329
83	1000	0.6181
83	1000	0.704
83	1194	0.756
os 83	1333	0.7854
03	1333	0.7004

Generator Efficiency Curves

Plant: Morony

Name: "U1,2_25"

Description: "Generators per ""8 - Power Plant Eq Performance Data\Generator info - JCummings.xlsx"". Entries for 1MW and 3MW added for turbine efficiency smoothing. Extended to 25MW to correspond to PCS and PI limits."

Notes: ASCANGAS 2015/2/4. KADAMEC 2015/2/9 Checked

Max Generator Capacity Generator Output (MW) Efficiency 25 0 0 25 1 0.6 25 0.9 3 25 4.9 0.9395 25 9.8 0.9673 25 14.7 0.9756 25 19.6 0.9793 25 24.5 0.9808 25 0.9808 25

Plant Flow Type

 Plant:
 Morony

 Name:
 MaxCap

 Description:
 Max Capacity

 Notes:
 BKROLAK
 2015/1/16.

Calendar Day Run at Peak Efficiency 1-Jan FALSE 31-Dec FALSE

Scenario Information for Thompson Falls

Plant/Node	Physical Settings	Operation Settings	Generation Settings
Thompson Falls	Base_Peak	Base Base	

Physical Settings

Plant: Thompson Falls Base Peak Name: Description: Base Peaking BKROLAK 2015/1/19. ASCANGAS 2015/1/19 checked. BKROLAK 2015/1/30 Changed Alt_TW Curve to be U7_NoxDrafted. KADAMEC 2015/2/6 Checked Notes: Reservoir Storage: Base Reservoir Area: Monthly Evaporation: Tailwater Curve: U7TW_NoxNorm Spillway Curve: Base Low Level Outlet: Alt. Spillway: Alt. Tailwater Curve: U7_NoxDrafted Ramp Rating Curve:

Plant Options: Base_Peak

B-78

Reservoir Storage

Plant: Thompson Falls

Name: Base

Description: "Base from ""3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls"" converted to acre-feet."

Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/16 checked.

(ft)	Volume (af)
0	. ,
520	
1081	
1690	
2348	
3059	
3822	
4641	
5520	
6460	
7464	
8533	
9669	
10877	
12161	
13523	
14969	
15733	
16497	
	0 520 1081 1690 2348 3059 3822 4641 5520 6460 7464 8533 9669 10877 12161 13523 14969 15733

Tailwater Curve

Plant: Thompson Falls

Name: U7TW_NoxNorm

Description: "Unit 7 tailwater, with Noxon Normal elevation. From ""5 - Tailwater Rating Curves\THF Tailwater.xls""."

Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/17 checked.

Elevation	(ft)	Flow (cfs)
2334.38	0	
2334.75	4000	
2334.9	5000	
2335	5500	
2335.5	7000	
2335.75	8000	
2336.38	10000	
2337.19	12000	
2337.75	14000	
2338.38	16000	
2339	18000	
2339.5	20000	
2340.9	25000	
2342.25	30000	
2343.5	35000	
2344.63	40000	
2345.82	45000	

2346.76	50000
2350.19	70000
2354	100000

Spillway Curve

Plant: Thompson Falls

Name: Base

Description: "Base data digitized from PDF file ""4 - Spillway discharge rating curves\THO 2006 --Combined Spillway Discharge Curve.pdf""." Notes: BKROLAK 2015/1/16. ASCANGAS 2015/1/17 checked.

Elevation	(ft)	Flow (cfs)
2380	0	. ,
2381	2100	
2382	6000	
2383	14000	
2384	22000	
2385	34000	
2388	70000	
2390	100000	
2395	202000	
2398	274000	
2398.5	291000	
2400	315000	
2401	332000	
2403	380000	
2405	440200	

Alt. Tailwater Curve

Plant: Thompson Falls

Name: U7_NoxDrafted

Description: "From ""5 - Tailwater Rating Curves\THF Tailwater.xls"". U7 Noxon Drafted." Notes: BKROLAK 2015/1/30. KADAMEC 2015/2/6 Checked

Elevation (ft)		Flow (cfs)
2329.9	0	11011 (010)
2330	5500	
2331.29	7000	
2332.41	8000	
2334	10000	
2335.33	12000	
2336.47	14000	
2337.5	16000	
2338.33	18000	
2339.11	20000	
2340.67	25000	
2342.24	30000	
2343.5	35000	
2344.63	40000	
2345.82	45000	
2346.76	50000	
2350.19	70000	
2354	100000	

Plant Options

Plant: Thompson Falls Name: Base_Peak Description: Peaking operations. Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/17 checked.

> Min Powerhouse Flow Plant Operation TypeDelinked - Owner Delinked - System Target Unit Power (MW) Full Pond Elev (ft) 0 1 FALSE FALSE 0 2396.5

Operation Settings

Plant: Thompson Falls Name: Base Description: Base conditions. Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/20 checked. Spill Elevations: 2396.5 Target Elevations: 2396 Minimum Elevations: 2392.5_PeakingLimit Weekly Drawdown: Water Withdrawals: Reservoir Fluctuation Limits: Reservoir Fluctuation Rates: Tailwater Ramping Rates: Minimum Instantaneous Flow: 6000cfsOrInflow Minimum Daily Average Flow: Recreation Flows: Bypass Flow: FishLadder Maximum Flow: Max Flow from Elev:

Spill Elevations

Flashboards:

 Plant:
 Thompson Falls

 Name:
 2396.5

 Description:
 "Top of peaking pool. Top of flashboards. per ""RESERVOIR-CAPACITY.xls""."

 Notes:
 BKROLAK 2015/1/13. ASCANGAS 2015/1/19 checked.

Calendar Day Elevation (ft) 1-Jan 2396.5 31-Dec 2396.5

Target Elevations

 Plant:
 Thompson Falls

 Name:
 2396

 Description:
 "50th percentile (median) of historical elevations from ""HDB THF 198801 to 201411.xlsx""."

 Notes:
 BKROLAK
 2015/1/13.

 KADAMEC 2015/1/19 Checked as normal water elevation
 State of the second second

Calendar Day Elevation (ft) 1-Jan 2396

B-81

31-Dec 2396

Minimum Elevations

 Plant:
 Thompson Falls

 Name:
 2392.5_PeakingLimit

 Description:
 "Bottom of Peaking band 2396.5 to 2392.5 from ""Regulatory Constraints.pdf"". (4 ft below full pool elevation of 2396.5 ft)"

 Notes:
 BKROLAK 2015/1/13. KADAMEC 2015/2/9 Checked

Calendar Day Elevation (ft) 1-Jan 2392.5 31-Dec 2392.5

Minimum Instantaneous Flow

Plant: Thompson Falls Name: 6000cfsOrInflow Description: "Per ""Regulatory Constraints.pdf""." Notes: BKROLAK 2015/1/13. KADAMEC 2015/2/9 Checked

Calendar DayFlow (cfs) Or Inflow1-Jan6000TRUE31-Dec6000TRUE

Bypass Flow

Plant: Thompson Falls

Name: FishLadder

Description: "From operations plan "The U.S. Fish and Wildlife Service and Commission Approved Thompson Falls Fish Ladder operates annually from mid-March to late October depending on weather (shuts down when freeze conditions are imminent). Fish ladder flows range from 11 cfs to 81 cfs, but typically run at the high end (80 cfs) of this range. In addition to these flows through the ladder itself, NWE seasonally or when warranted by other factors, opens one spill gate near the fish ladder to provide an additional fish attractant flow of 25 cfs to 100 cfs. The spill flow rate (in this range) is variable as experimental and other factors warrant it.""

Notes: BKROLAK 2015/2/4. ASCANGAS 2015/2/4 checked.

Calendar DayFlow (cfs) Or Inflow Destination Node1-Jan0FALSE99915-Mar80FALSE99925-Oct80FALSE99926-Oct0FALSE99931-Dec0FALSE999

Generation Settings

 Plant:
 Thompson Falls

 Name:
 Base

 Description:
 Base 7 unit powerhouse combinations post-1995.

 Notes:
 BKROLAK 2015/1/19. KADAMEC 2015/2/10 Checked

 Powerhouse Setup:
 BaseHD_Final

 Powerhouse Weekend Ops:
 Maintenance Schedule:

 Minimum Flow Unit:
 Plant Flow Type:

 Plant Flow Type:
 MaxCap

 Limit Off Peak Gen:
 Max

Powerhouse Setup

Plant: Thompson Falls

Name: BaseHD_Final

Description: "Using unit combined efficiency for Units 2-6. Lowered input heads. Manual editing of U1,3 and U7. Extended generator capacity for U1,3. Updated U2,4,5,6 turb curve for smoothed performance. U2,4,5,6 Gen Eff extended to 7.5 MW to prevent generator limiting."

Notes: BKROLAK 2015/1/29. ASCANGAS 2015/2/5. KADAMEC 2015/2/9 Checked

Dispatched: FALSE

Unit Nu	Imber	Headloss Turbine Efficiency Generator Efficiency Gate Leakage
1	7units	"U1,3_HD_R2" "U1,3_8.9" 0
2	7units	"U2,4,5,6_Total_Unit_HD_R2" "U2,4,5,6_7.5_1.0_eff" 0
3	7units	"U1,3_HD_R2" "U1,3_8.9" 0
4	7units	"U2,4,5,6_Total_Unit_HD_R2" "U2,4,5,6_7.5_1.0_eff" 0
5	7units	"U2,4,5,6_Total_Unit_HD_R2" "U2,4,5,6_7.5_1.0_eff" 0
6	7units	"U2,4,5,6_Total_Unit_HD_R2" "U2,4,5,6_7.5_1.0_eff" 0
7	7units	U7_B_HD_ManualEditLimited U7_59 0

Turbine Efficiency Curves

Plant: Thompson Falls

Name: "U1,3_HD_R2"

Description: "U1 and 3. 9350 HP turbines. 5-60% gate is the lowest flow in this table. Data from U3 index test March 2002 in ""8 - Power Plant Eq Performance Data\TFalls\Turbine Runner Replacement (RS662)\Unit No 3\Unit 3 Performance.xls". and extended to cover the full range of operational heads and limited flow to maximum flow reported in the PI data and approximate 60% gate limitation of 1350 cfs."

Notes: ASCANGAS 2015/2/4. KADAMEC 2015/2/9 Checked

11 1 (6)		
Head (ft)	Flow (cfs)	
43	1258.38	0.7991
43	1430.06	0.838
43	1550.25	0.8694
43	1687.49	0.831
54	1323.37	0.839
54	1503.92	0.8807
54	1630.32	0.9137
54	1774.64	0.8739
57.2	1342.28	0.8506
57.2	1525.4	0.8932
57.2	1653.61	0.9266
57.2	1799.99	0.8863
58.4	1356.28	0.8588
58.4	1541.32	0.9019
58.4	1670.87	0.9359
58.4	1818.78	0.8951
59.5	1369	0.8669
59.5	1555.77	0.9106
59.5	1686.53	0.9451
59.5	1835.82	0.904

Turbine Efficiency Curves

Plant: Thompson Falls Name: "U2,4,5,6_Total_Unit_HD_R2" Description: "From U5 index test March 2002 in ""8 - Power Plant Eq Performance Data\TFalls\Turbine Runner Replacement (RS662)\Unit No 3\Unit 3 Performance.xls"". Used total unit performance and limited based on PI data."

Notes: ASCANGAS 2015/2/4. KADAMEC 2015/2/9 Checked

Head (ft) 43 43 43 43 54 54 54 54 54 57.2 57.2 57.2 57.2 57.2 57.2 57.2	Flow (cfs) 1154.03 1310.33 1503.31 1696.22 1213.64 1378.01 1580.95 1783.82 1230.97 1397.69 1603.54 1809.31 1243.82	Efficiency 0.6998 0.7553 0.7553 0.7489 0.6998 0.7553 0.7489 0.6998 0.7553 0.7489 0.7553 0.7553 0.7489 0.6998
•••=		
58.4	1412.28	0.7553
58.4 58.4	1620.27 1828.19	0.7553 0.7489
59.5	1255.48	0.6998
59.5 59.5	1425.52 1635.46	0.7553 0.7553
59.5	1845.33	0.7489

Turbine Efficiency Curves

Plant: Thompson Falls

Name: U7_B_HD_ManualEditLimited

Description: "Input efficiencies and flows computed from PCS curves as documented in ""8 - Power Plant Eq Performance Data\Performance Verification Data\Thompson Falls PCS Water Curves.xls"". Extended to maximum flow reported in PI data and limited due to vibration limitations, approximately 10MW and resricted based on PI data." Notes: BKROLAK 2015/2/4. ASCANGAS 2015/2/5. KADAMEC 2015/2/9 Checked. BKROLAK 2015/2/12 Documentation extended.

Head (ft) 43 43 43 43 43 43 43 43 43 43 43 43 43	Flow (cfs) 3349.3 3598.9 4177.5 5222.8 6774.5 7612.5 7856.9 8333.7 8948.3 10795 12367.1 13537.9 15260.2	Efficiency 0.8836 0.8914 0.9038 0.9223 0.9259 0.9293 0.9314 0.9304 0.9301 0.9257 0.9208 0.9116 0.9008
		0.00

$\begin{array}{c} 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\$	6825 7040 7458 7997 9626 11000 12000 13471 13618 2569 2754 3183 3958 5083 5700 5873 6207 6638 7956 9047 9803 10915 11026 2483 2660.5 3072.5 3816 4892.5 5653 5974.5 6389 7646 8691 9403.5 10471 10577.5 2397 2567 2962 3674 4702 5273 5433 5742 6140 7336	0.9293 0.9314 0.9304 0.9301 0.9257 0.9208 0.9116 0.9008 0.8799 0.8769 0.8769 0.8769 0.8769 0.9213 0.9227 0.9273 0.9336 0.9338 0.9334 0.9333 0.9299 0.9264 0.9261 0.8633 0.8727 0.888 0.9106 0.9217 0.9262 0.9264 0.9261 0.9262 0.9264 0.9261 0.9262 0.9264 0.9262 0.9264 0.9262 0.9264 0.9262 0.9264 0.9262 0.9264 0.9262 0.9264 0.9262 0.9286 0.9339 0.9328 0.9339 0.9322 0.9286 0.9286 0.9284 0.8587 0.8684 0.9207 0.9252 0.9284 0.9319 0.9344
65 65	5742 6140	0.9295 0.9319
65	10129	0.9306

Generator Efficiency Curves

Plant: Thompson Falls

Name: "U1,3_8.9"

Description: "From "8 - Power Plant Eq Performance Data\Generator info - JCummings.xlsx". 8.9 MW output entered per Pl data max output from U1 and U3 to keep from being enerator limited."

Notes: BKROLAK 2015/1/16. KADAMEC 2015/1/21 Checked

Max Ge	enerator C	apacity	Generator Output (MW)	Efficiency
8.9	0	0		
8.9	1.4	0.9428		
8.9	2.9	0.9692		
8.9	4.3	0.9772		
8.9	5.8	0.9806		
8.9	7.2	0.9821		
8.9	8.9	0.9821		

Generator Efficiency Curves

Plant: Thompson Falls

Name: "U2,4,5,6_7.5_1.0_eff"

Description: 1.0 eff as turbine efficiency includes generator efficiency. Extended to 7.5MW to prevent generator limiting. Notes: BKROLAK 2015/1/29. KADAMEC 2015/2/9 Checked

Max Generator Capacity			Generator Output (MW)	Efficiency
7.5	0	1		-
7.5	1.2	1		
7.5	2.5	1		
7.5	3.7	1		
7.5	5	1		
7.5	7.5	1		

Generator Efficiency Curves

 Plant:
 Thompson Falls

 Name:
 U7_59

 Description:
 "From ""8 - Power Plant Eq Performance Data\Generator info - JCummings.xlsx""."

 Notes:
 BKROLAK 2015/1/16. KADAMEC 2015/1/21 Checked

Max Gene	erator Capa	acity	Generator Output (MW)	Efficiency
59	0	0		
59	11.8	0.9536		
59	23.6	0.9744		
59	35.4	0.9804		
59	47.2	0.9828		
59	59	0.9836		

Plant Flow Type

 Plant:
 Thompson Falls

 Name:
 MaxCap

 Description:
 Max capacity use of units.

 Notes:
 BKROLAK
 2015/1/22.

Calendar Day Run at Peak Efficiency 1-Jan FALSE 31-Dec FALSE

Scenario Information for Mystic

Plant/Node Physical Settings Operation Settings Generation Settings Mystic Base_Peak Base Base_Post2008

Physical Settings

Plant: Mystic Name: Base Peak Description: Base Peaking. Notes: BKROLAK 2015/1/19. KADAMEC 2015/2/6 Checked Reservoir Storage: Base Reservoir Area: Monthly Evaporation: Tailwater Curve: Base Spillway Curve: Base Low Level Outlet: Alt. Spillway: Alt. Tailwater Curve: Ramp Rating Curve: Plant Options: Base_Peak

Reservoir Storage

Plant: Mystic

Name: Base

Description: "Base from ""3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls"" converted to acre-feet. Lowest point in curve modified from 7612 at 0 volume to intake sill elevation 7608.75 feet per ""P-2301-1005, F-5, Mystic Intake Plan, Elev & Sections, 12-26-2007.TIF""."

Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/16 checked. BKROLAK 2015/2/9. ASCANGAS 2015/2/12 checked.

Tailwater Curve

Plant: Mystic

Name: Base

Description: "Centerline of discharge jet per ""1 - Drawings\12_Mystic\P-2301-1018, F-6, Mystic Flowline Plan, Profile & Details, 09-20-2011.tif""." Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/16 checked.

> Elevation (ft) Flow (cfs) 6545 1

Spillway Curve

Plant: Mystic

Name: Base

Description: "Flashboards removed per ""4 - Spillway discharge rating curves\MYL DISCHARGE CAPABILITY.xls""."

Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/17 checked.

Elevation (ft) Flow (cfs) 7670 0 7670.5 328.99 7671 971.02 7671.5 1852.36 7672 2922.89 7672.5 4189.26 7673 5633.49 7673.5 7252.47 7674 9004.66

Plant Options

 Plant:
 Mystic

 Name:
 Base_Peak

 Description:
 Peaking operations.

 Notes:
 BKROLAK 2015/1/13. ASCANGAS 2015/1/17 checked.

Min Po	Min Powerhouse Flow		Plant Operation TypeDelinked - Owner		Delinked - System	Target Unit Power (MW)	Full Pond Elev (ft)	
0	1	FALSE	FALSE	0	7673.5			

Operation Settings

Plant: Mystic Name: Base Description: Base conditions using average historical monthly starting elevations and minimum elevations requirement with summer limits. Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/20 checked. Spill Elevations: 7673.5 Target Elevations: HistAvg Minimum Elevations: Seasonal Weekly Drawdown: Water Withdrawals: Reservoir Fluctuation Limits: Reservoir Fluctuation Rates: Tailwater Ramping Rates: Minimum Instantaneous Flow: Minimum Daily Average Flow: Recreation Flows: Bypass Flow: Base Maximum Flow: Max Flow from Elev: Flashboards:

Spill Elevations

 Plant:
 Mystic

 Name:
 7673.5

 Description:
 "Normal Water Surface Elev per""1 - Drawings\12_Mystic\P-2301-1001, F-1, Mystic Dams, 12-26-2007.TIF""."

 Notes:
 BKROLAK

 2015/1/13.
 ASCANGAS 2015/1/19 checked.

Calendar Day Elevation (ft) 1-Jan 7673.5 31-Dec 7673.5

Target Elevations

Plant: Mystic

Name: HistAvg

Description: "Historical average month starting elevations from ""HDB MYL 198801 to 201411.xlsx""." Notes: BKROLAK 2015/1/13. KADAMEC 2015/2/12 Checked

> Calendar Day Elevation (ft) 1-Jan 7639.86 7630.46 1-Feb 1-Mar 7622.05 1-Apr 7615.21 1-May 7613.79 7632.79 1-Jun 1-Jul 7669.93 1-Aug 7672.95 1-Sep 7669.66 1-Oct 7665.12 1-Nov 7658.1 1-Dec 7648.77 31-Dec 7639.86

Minimum Elevations

Plant: Mystic

Name: Seasonal

Description: "Just below lowest observed elevation 1988 to 2014 during winter. Above 7663.5 Jul 10 to Sep 15 from ""HDB MYL 198801 to 201411.xlsx""

Notes: BKROLAK 2015/1/13. KADAMEC 2015/2/6 Checked

C	alendar	Day	Elevation (ft)
1	-Jan	7610	
1	-Jun	7610	
1	0-Jul	7663.5	
1	5-Sep	7663.5	
1	-Oct	7610	
3	1-Dec	7610	

Bypass Flow

Plant: Mystic Name: Base Description: "Base condition with 10 cfs Jun-Aug, 5 cfs otherwise."

Notes: BKROLAK 2015/1/13

Calendar	Day	Flow (cfs)	Or Inflow	Destination Node
1-Jan	5	FALSE	13	
1-Jun	10	FALSE	13	
31-Aug	10	FALSE	13	
1-Sep	5	FALSE	13	
31-Dec	5	FALSE	13	

Generation Settings

Plant: Mystic Name: Base_Post2008 Description: Upgraded turbines post Apr 2008. Notes: BKROLAK 2015/1/14. KADAMEC 2015/2/10 Checked Powerhouse Setup: 2008_Later Powerhouse Weekend Ops: Maintenance Schedule: Minimum Flow Unit: Plant Flow Type: MaxCap Limit Off Peak Gen:

Powerhouse Setup

 Plant:
 Mystic

 Name:
 2008_Later

 Description:
 Powerhouse setup with two upgraded turbines. Using unit combined efficiency. Modified Rev1 turbines to calibrate to historical PI and daily operations data.

Notes: BKROLAK 2015/1/29. KADAMEC 2015/2/6 Checked Dispatched: FALSE

Unit N	umber	Headloss Turbine	Efficiency Genera	tor Efficiency	Gate Leakage
1	2Unit	U1-2_UG_R1	U1-2_6MW_1.0_e	eff 0	
2	2Unit	U1-2_UG_R1	U1-2_6MW_1.0_6	eff 0	

Turbine Efficiency Curves

Plant: Mystic

Name: U1-2_UG_R1

Description: "Unit 1, upgraded Apr 2007. Unit 2 upgraded March 2008. This is total unit efficiency, from "Mystic Unit 1 2 Comparison.xls"". Flow increased by 4 cfs at upper limit to calibrate to PI data."

Notes: BKROLAK 2015/1/13. CDOE 2015/1/21. KADAMEC 2015/1/21 Checked

Head (ft)	Flow (cfs)	Efficiency
903	3.77	0.084
903	12.26	0.6184
903	20.75	0.74
903	31.13	0.7914
903	38.67	0.8133
903	47.16	0.8303
903	54.71	0.8365
903	61.31	0.8388
903	70.74	0.8382
903	77.34	0.8379
903	82.29	0.837

B-91

Generator Efficiency Curves

Plant: Mystic

Name: U1-2_6MW_1.0_eff

Description: "Eff from ""8 - Power Plant Eq Performance Data\Generator info - JCummings.xlsx"" with 0.8 PF. Estimated values for less thatn 1.2 MW from ""8 - Power Plant Eq Performance Data\Mystic turbine\Turbine\Turbine Upgrade Unit #1 (RS318)Mystic Unit 1 2 Comparison.xls". 1.0 eff as turbine efficiency includes generator efficiency. Increased maximum capacity to 6.2 based on Pl data."

Notes: CDOE 2015/1/21. KADAMEC 2015/1/21 Checked

Max Generator Capacity			Generator Output (MW)	Efficiency
6.2	0	1		-
6.2	6.2	1		

Plant Flow Type

Plant: Mystic Name: MaxCap Description: Max Capacity. Notes: BKROLAK 2015/1/14. KADAMEC 2015/2/6 Checked

> Calendar Day Run at Peak Efficiency 1-Jan FALSE 31-Dec FALSE

Scenario Information for West Rosebud Lake

Plant/Node Physical Settings Operation Settings Generation Settings West Rosebud Lake Base_StorBase

Physical Settings

Plant: West Rosebud Lake Name: Base Stor Description: Base storage option. Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/17 checked. BKROLAK 2015/1/21 Checked modified spillway curve. KADAMEC 2015/2/6 Checked Reservoir Storage: Base Reservoir Area: Monthly Evaporation: Tailwater Curve: Base Spillway Curve: NoFlashboards Low Level Outlet: Alt. Spillway: Alt. Tailwater Curve: Ramp Rating Curve: Plant Options: Base Stor

Reservoir Storage

Plant: West Rosebud Lake Name: Base

Description: "Base from ""3 - Reservoir area & capacity curves\RESERVOIR-CAPACITY.xls"" converted to acre-feet. Zero volume was reduced from original curve value of 6387.4 to 6386.4 feet, which is the weir crest elevation. Weir crest from ""Reservoir-capacity.xls""

Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/16 checked.. BKROLAK 2015/1/22. ASCANGAS 2015/2/12 checked.

Elevation	ı (ft)	Volume (af)
6386.4	0	
6388.4	34	
6389.4	60	
6390.4	93	
6391.4	131	
6392.4	171	

6393.4	210
6394.4	254
6395.4	298
6396.4	339
6397.4	389
6398.4	438
6399.4	482
6399.9	504

Tailwater Curve

Plant:	West Rosebud Lake				
Name:	ne: Base				
Descriptio	n:	"Base using energy of	diffuser crest: rel elev 77.4, From ""1 - Drawings\12_Mystic\P-2301-1010, F-10, Mystic Reregulating Reservoir Dam, 12-26-2007.T	'IF"""	
Notes:	BKROLAK	(2015/1/13. ASCAN	IGAS 2015/1/19 checked.		
		Elevation (ft)	Flow (rfc)		

Elevation (π) FIOW (CTS) 6384.8 0

Spillway Curve

Plant: West Rosebud Lake

NoFlashboards Name:

Description: "From P-2301-1010, F-10, Mystic Reregulating Reservoir Dam, 12-26-2007.TIF (End point duplicated from Weir crest (6386.4) to project boundary (6399.99) from "Reservoir-Capacity.xls"" for an upper bound above the provided discharge curve)." Notes: KADAMEC 2015/1/19. BKROLAK 2015/1/21 Checked.

Elevation	(ft)	Flow (cfs)
6386.4	0	
6387.8	200	
6389.4	491	
6390	642	
6390.7	858	
6391.9	1303	
6394.1	2215	
6396.9	3705	
6399.8	5282	
6401.4	24000	

Plant Options

Plant: West Rosebud Lake Name: Base_Stor Storage Reservoir. Description: BKROLAK 2015/1/13. ASCANGAS 2015/1/17 checked. Notes:

> Min Powerhouse Flow Plant Operation TypeDelinked - Owner Delinked - System Target Unit Power (MW) Full Pond Elev (ft) 0 0 FALSE FALSE 0 6397.4

Operation Settings

Plant: West Rosebud Lake Name: Base

B - 94

Description: Base conditions with fish spawning and egg recruitment flows. Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/20 checked. KADAMEC 2015/2/12 checked again Spill Elevations: 6397.4 Target Elevations: 6397.4 Minimum Elevations: 6386.4 Weekly Drawdown: Water Withdrawals: Reservoir Fluctuation Limits: Reservoir Fluctuation Rates: Tailwater Ramping Rates: Minimum Instantaneous Flow: Minimum Daily Average Flow: Recreation Flows: Bypass Flow: SOP Maximum Flow: Max Flow from Elev: Flashboards:

Spill Elevations

 Plant:
 West Rosebud Lake

 Name:
 6397.4

 Description:
 "Norm Reservori Water Level from ""Reservoir-Capacity.xls""."

 Notes:
 BKROLAK 2015/1/13. KADAMEC 2015/2/12 Checked

Calendar Day Elevation (ft) 1-Jan 6397.4 31-Dec 6397.4

Target Elevations

 Plant:
 West Rosebud Lake

 Name:
 6397.4

 Description:
 "Norm Reservori Water Level from ""Reservoir-Capacity.xls""."

 Notes:
 BKROLAK 2015/1/13. ASCANGAS 2015/1/19 checked.

Calendar Day Elevation (ft) 1-Jan 6397.4 31-Dec 6397.4

Minimum Elevations

 Plant:
 West Rosebud Lake

 Name:
 6386.4

 Description:
 "Weir crest from ""Reservoir-capacity.xls"""

 Notes:
 BKROLAK 2015/1/13. ASCANGAS 2015/1/19 checked.

Calendar Day Elevation (ft) 1-Jan 6386.4 31-Dec 6386.4

Bypass Flow

Plant: West Rosebud Lake

Name: SOP

Description: "MFWP Approved SOP, includes increased flows Oct1-Nov30 for adult spawning flow and Dec1-Apr15 egg/fry recruitment." Notes: BKROLAK 2015/1/13. ASCANGAS 2015/1/19 checked.

> Calendar Day Flow (cfs) Or Inflow Destination Node 1-Jan 43 FALSE 999 FALSE 999 TRUE 999 15-Apr 43 16-Apr 20 30-Sep 20 TRUE 999 1-Oct 75 FALSE 999 30-Nov 75 1-Dec 43 FALSE 999 FALSE 999 31-Dec 43 FALSE 999

APPENDIX C

COMPARISONS OF THE 15-MINUTE MODEL SIMULATED, HOURLY HISTORICAL PI, AND HISTORICAL DAILY POWER VERSUS FLOW VALUES FOR EACH POWERHOUSE

FIGURE C-1 MODELED AND HISTORICAL MADISON POWER VERSUS FLOW COMPARISON

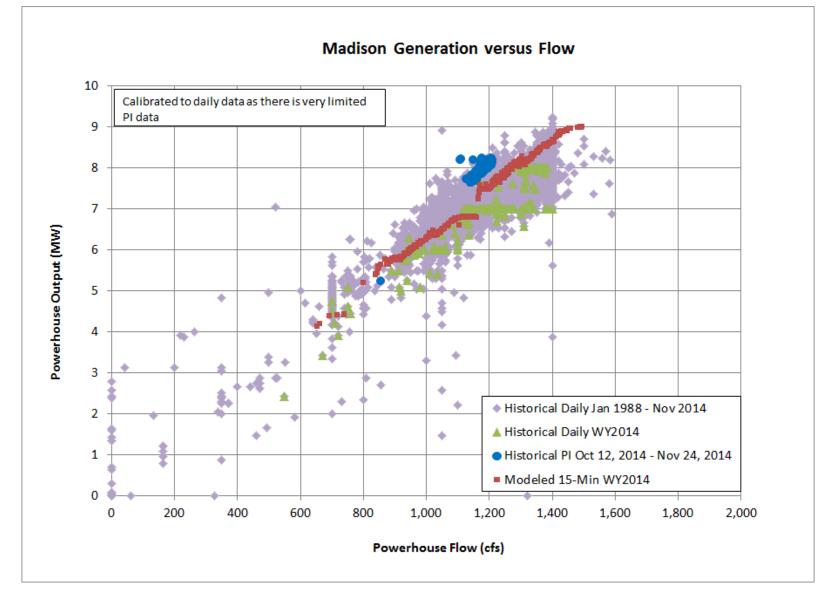


FIGURE C-2 MODELED AND HISTORICAL HAUSER POWER VERSUS FLOW COMPARISON

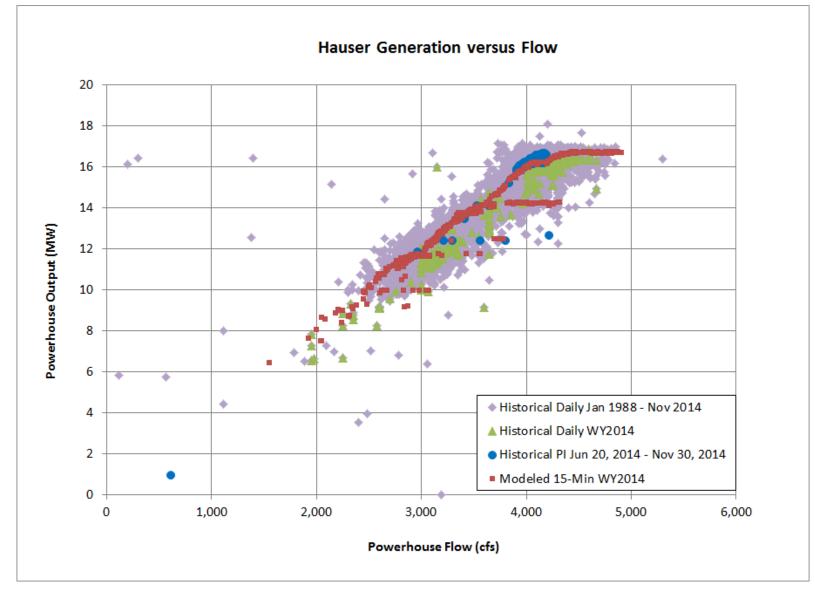


FIGURE C-3 MODELED AND HISTORICAL HOLTER POWER VERSUS FLOW COMPARISON

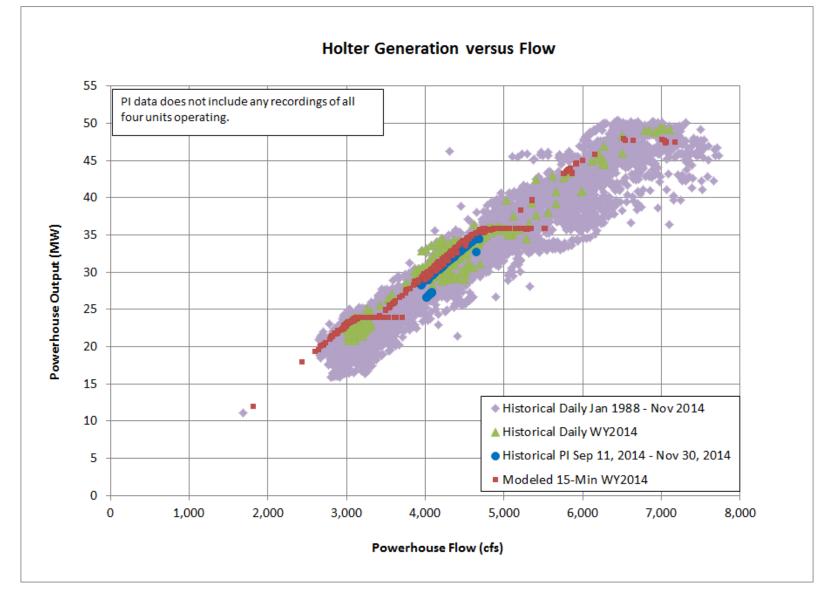


FIGURE C-4 MODELED AND HISTORICAL BLACK EAGLE POWER VERSUS FLOW COMPARISON

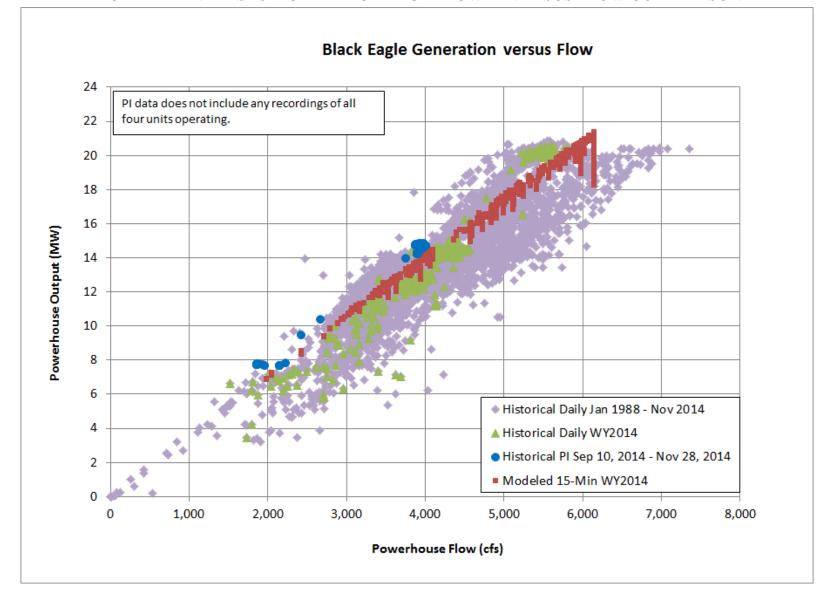


FIGURE C-5 MODELED AND HISTORICAL RAINBOW POWER VERSUS FLOW COMPARISON

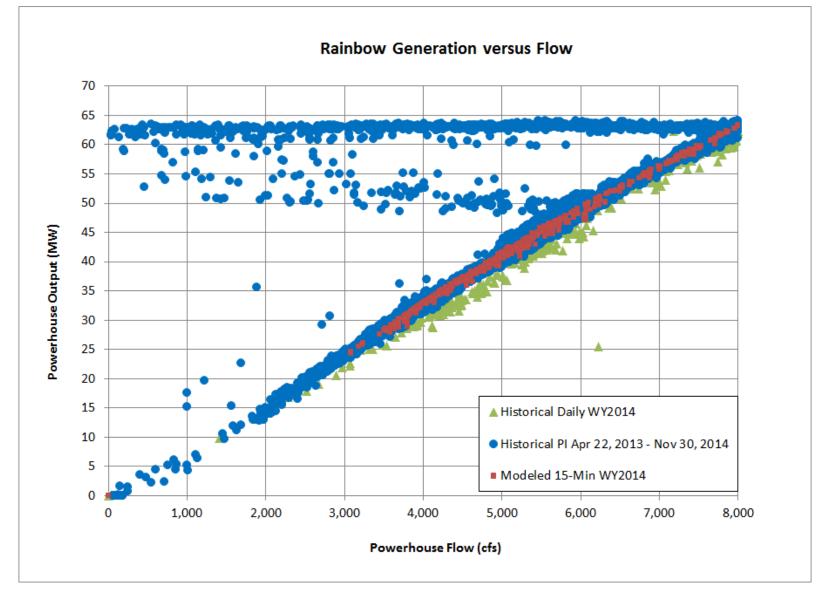


FIGURE C-6 MODELED AND HISTORICAL COCHRANE POWER VERSUS FLOW COMPARISON

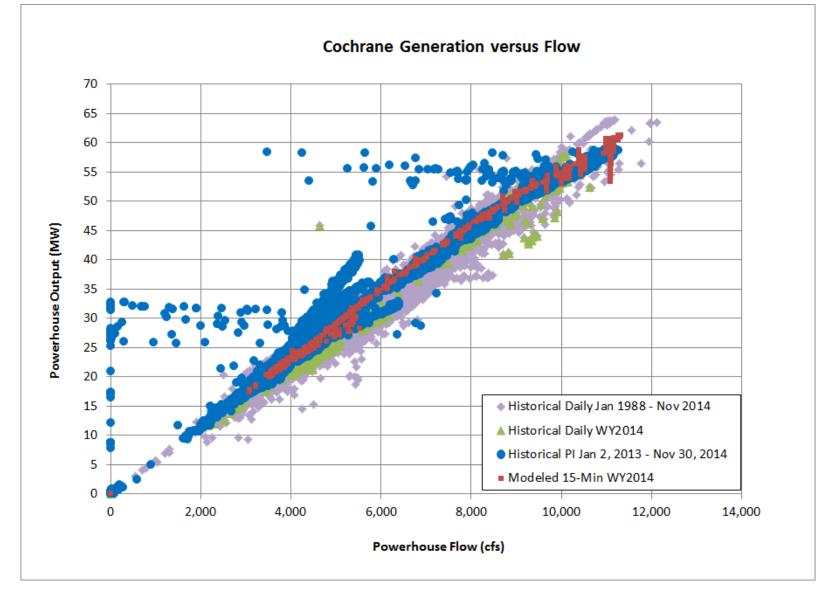


FIGURE C-7 MODELED AND HISTORICAL RYAN POWER VERSUS FLOW COMPARISON

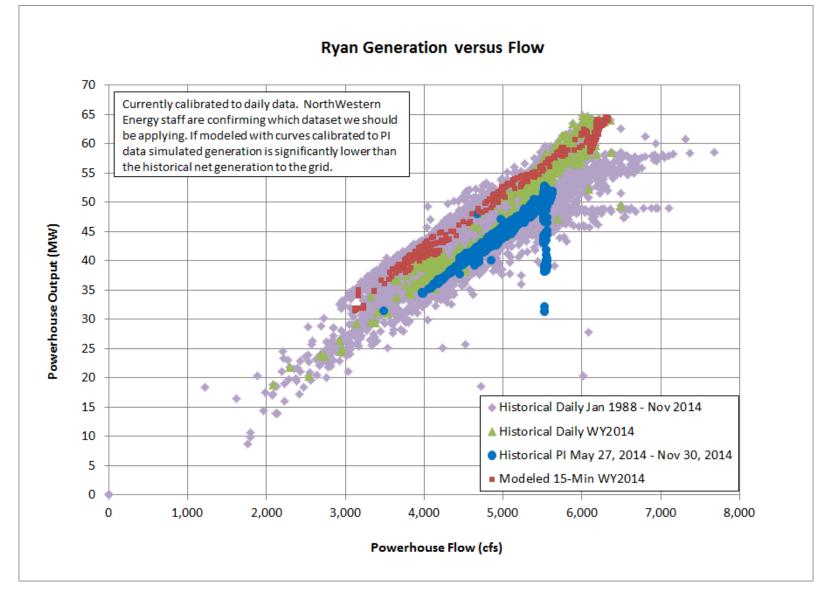


FIGURE C-8 MODELED AND HISTORICAL MORONY POWER VERSUS FLOW COMPARISON

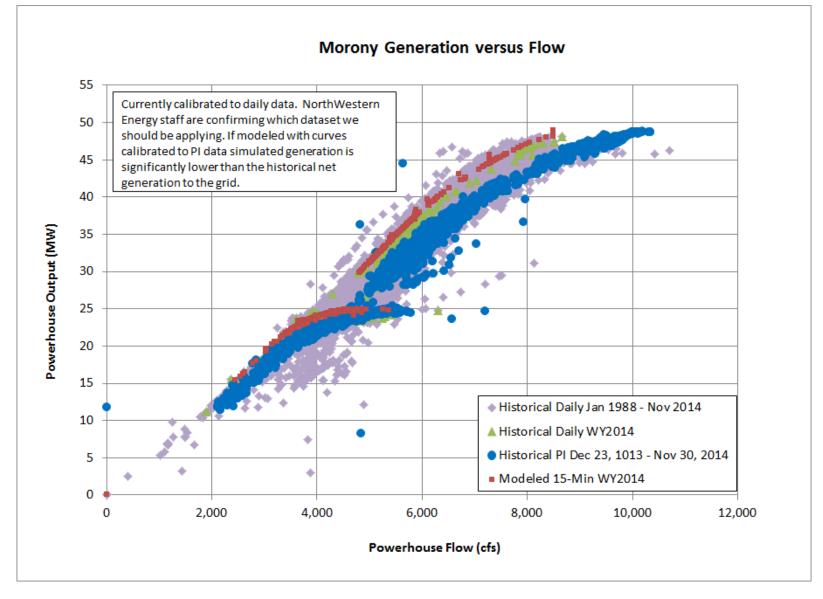


FIGURE C-9 MODELED AND HISTORICAL THOMPSON FALLS POWER VERSUS FLOW COMPARISON

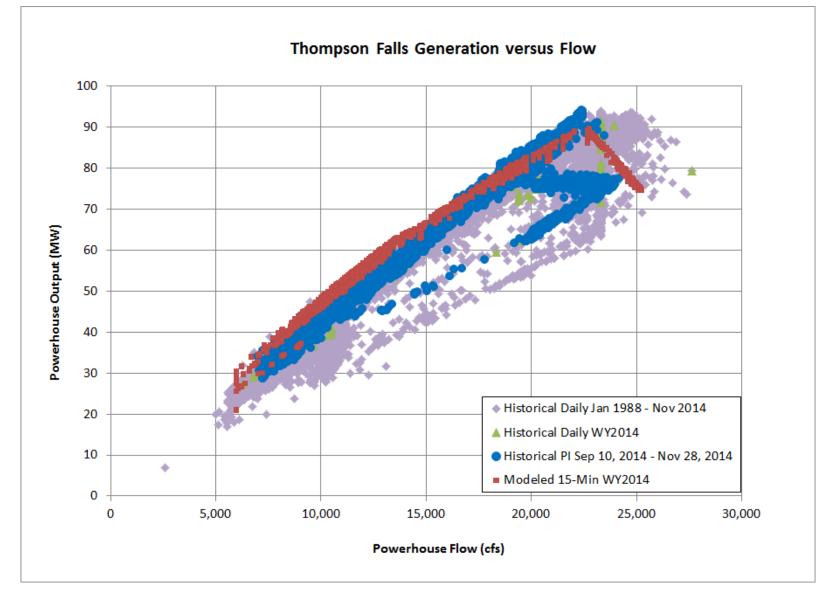
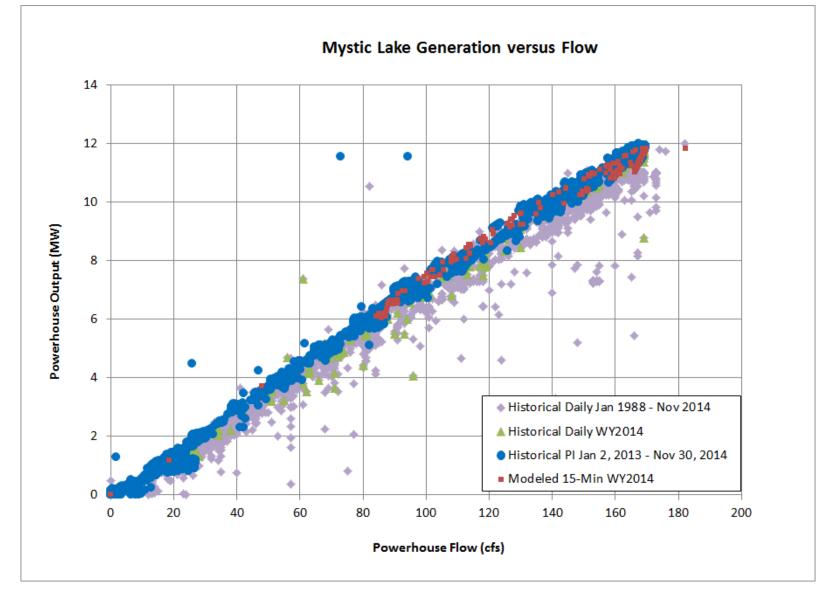



FIGURE C-10 MODELED AND HISTORICAL MYSTIC LAKE POWER VERSUS FLOW COMPARISON

