

PPLM-TFalls-2919

Kimberly D. Bose Secretary Federal Energy Regulatory Commission 888 First Street, NE Washington, D.C. 20426

March 26, 2012

RE: Filing 2011 Annual Activity, Fish Passage and Bull Trout Take Report for the Thompson

Falls Hydroelectric Project

Dear Secretary Bose:

Herein attached, per Item D of Commission Order February 12, 2009, is the 2011 Annual Activity, Fish Passage and Bull Trout Take Report for the Thomson Falls Project which PPL Montana has completed in consultation with agencies (USFWS, MFWP and MDEQ) and the Confederated Salish and Kootenai Tribes. USFWS email of approval for this report and filing with the Commission is provided on page 2.

Sincerely

Jon Yourdonnais

Manager Hydro Licensing and Compliance

Cc: Mark

Mark Wilson, USFWS

Wade Fredenberg, USFWS

Tim Bodurtha, USFWS

Craig Barfoot, CSKT

Andy Welch, PPLM

Kenneth Breidinger, MFWP

Jim Darling, MFWP

Brent Mabbott, PPLM

Gordon Criswell, PPLM

Dave Kinnard, PPLM

Carrie Harris, PPLM

Ginger Gillin, GEI

Kristi Webb, Steigers Corp

Erich Gaedeke, FERC Portland

## Jourdonnais, Jon H

From:

Mark\_Wilson@fws.gov

Sent:

Monday, March 26, 2012 9:34 AM Jourdonnais, Jon H

To:

Subject:

RE: TFalls Fish Passage Annual Report to Commission (ready for USFWS consideration of

approval)

**Attachments:** 

pic24626.gif

Hi Jon: The U.S. Fish and Wildlife Service approves the annual (2011) report for Thompson Falls fish passage activities.

Thank you.

Mark

R. Mark Wilson, Field Supervisor U.S. Fish and Wildlife Service Division of Ecological Services 585 Shepard Way Helena, MT 59601-6287 406/449-5225, ext. 205



# 2011 Annual Report Fish Passage Project

Thompson Falls Hydroelectric Project FERC Project Number 1869

Submitted to:

Federal Energy Regulatory Commission Washington, D.C.

Submitted by:

PPL Montana, LLC

Butte, Montana

In Collaboration With:

**Montana Fish Wildlife and Parks** 

Thompson Falls, Montana

U.S. Fish and Wildlife Service

Kalispell, Montana

**Montana Department Of Environmental Quality** 

Helena, Montana

**Confederated Salish and Kootenai Tribes** 

Pablo, Montana

With Assistance From:

GEI Consultants, Inc.

Lake Oswego, Oregon

**Steigers Corporation** 

Missoula, Montana

March 2012

©2012 by PPL Montana, LLC ALL RIGHTS RESERVED

## **Table of Contents**

| Exec | utive | Summa               | ry                                                | vii |
|------|-------|---------------------|---------------------------------------------------|-----|
|      | Base  | eline Fish          | heries Studies                                    | vii |
|      |       |                     | sh Passage (10-Year Fish Passage Evaluation Plan) |     |
|      |       |                     | rout Passage and Monitoring                       |     |
|      |       |                     | red Gas                                           |     |
|      | Gas   | Bubble <sup>3</sup> | Trauma Monitoring                                 | ix  |
|      | Thor  | mpson R             | iver Drainage (5-Year Reservoir Plan)             | x   |
|      |       |                     | cidental "Take"                                   |     |
|      |       |                     | unded Projects                                    |     |
| 1.0  | Intro | duction             | 1                                                 | 12  |
|      | 1.1   |                     | ound                                              |     |
|      | 1.2   |                     | iance with the FERC Order                         |     |
|      | 1.2   | Оотгра              | diloc with the refree order                       |     |
| 2.0  |       |                     | sheries Studies                                   |     |
|      | 2.1   |                     | llnetting                                         |     |
|      | 2.2   |                     | Electrofishing                                    |     |
|      |       | 2.2.1               | Lower Section                                     |     |
|      |       | 2.2.2               | Upper Section                                     |     |
|      | 0.0   | 2.2.3               | Summary                                           | 23  |
|      | 2.3   |                     | ectrofishing                                      | 23  |
|      |       | 2.3.1               | Electrofishing Above the Island Complex           |     |
|      | 0.4   | 2.3.2               | Electrofishing from Paradise to Plains            |     |
|      | 2.4   |                     | Clark Fork River Fisheries Data                   |     |
|      |       | 2.4.1               | Quinn's Section (2010)                            |     |
|      |       | 2.4.2               | St. Regis Section (2011)                          | 28  |
| 3.0  | Ups   | tream Fi            | ish Passage                                       | 30  |
|      | 3.1   | 2011 L              | Jpstream Fish Passage Facility Evaluation         | 30  |
|      | 3.2   |                     | veness of Fish Passage                            |     |
|      |       | 3.2.1               | 2011 Ladder Operations                            | 30  |
|      |       | 3.2.2               | 2011 Clark Fork River Conditions                  | 31  |
|      |       | 3.2.3               | Summary of Fish and Species                       | 33  |
|      |       | 3.2.4               | Fallback                                          |     |
|      |       | 3.2.5               | Movement from Tailrace to the Ladder              |     |
|      |       | 3.2.6               | Length of Time to Ascend the Ladder               |     |
|      |       | 3.2.7               | Timing of Fish Ascending the Ladder               | 41  |
|      |       | 3.2.8               | Weir Modes: V-notch vs. Orifice                   | 44  |
|      |       | 3.2.9               | Attractant Flow                                   |     |
|      |       | 3.2.10              | Bull Trout Genetics                               | 50  |
| 4 0  | Bull  | Trout P             | assage from Downstream Facilities                 | 52  |

|     | 4.1  | Monitoring Movement of Radio Tagged Bull Trout                   | . 55 |
|-----|------|------------------------------------------------------------------|------|
|     |      | 4.1.1 Radio Tagged Bull Trout Approaching Thompson Falls Dam.    | .55  |
|     |      | 4.1.2 Bull Trout 35                                              | .62  |
|     |      | 4.1.3 Bull Trout 37                                              | . 62 |
| 5.0 | Tho  | mpson River Drainage (5-Year Reservoir Plan)                     | 64   |
| 0.0 | 5.1  | Historic Data Review and Information Gaps                        |      |
|     | 0.1  | 5.1.1 Thompson River Drainage Database                           |      |
|     | 5.2  | West Fork Thompson River Drainage 2010 Fisheries Survey          |      |
|     | 5.3  | Fishtrap Creek Drainage 2011 Fisheries Survey                    |      |
|     | 0.0  | 5.3.1 Fishtrap Creek                                             |      |
|     |      | 5.3.2 Jungle Creek                                               |      |
|     |      | 5.3.3 Beatrice Creek                                             |      |
|     |      | 5.3.4 West Fork Fishtrap Creek                                   |      |
|     |      | 5.3.5 Beartrap Creek                                             |      |
| 6.0 | Tota | Il Dissolved Gas (TDG) Study                                     | 75   |
| 0.0 | 6.1  | Methods                                                          |      |
|     |      | 6.1.1 Total Dissolved Gas Monitoring                             | .75  |
|     |      | 6.1.2 Impact of Operations on TDG                                |      |
|     |      | 6.1.3 Gas Bubble Trauma Monitoring                               | .76  |
|     | 6.2  | TDG Results                                                      |      |
|     |      | 6.2.1 Measurements of TDG in the Project Area                    | .79  |
|     |      | 6.2.2 Spillway Panel Operations                                  | .81  |
|     | 6.3  | GBT Monitoring                                                   | .89  |
|     | 6.4  | Recommendations                                                  | .89  |
| 7.0 | TAC  | Funded Projects in 2011                                          | .90  |
|     | 7.1  | 2011 TAC Funded Projects                                         | .90  |
|     |      | 7.1.1 Bull Trout Genetic Sampling                                | .90  |
| 8.0 | Com  | pliance with the Terms and Conditions of the Biological Opinion. | .91  |
|     |      | Term and Condition TC1 – Upstream Passage:                       |      |
|     |      | 8.1.1 Requirement                                                |      |
|     |      | 8.1.2 Compliance                                                 | . 93 |
|     | 8.2  | TC2 – Downstream Passage                                         | . 93 |
|     |      | 8.2.1 Requirement                                                | . 93 |
|     |      | 8.2.2 Compliance                                                 |      |
|     | 8.3  | TC3 – Gas Supersaturation                                        | . 94 |
|     |      | 8.3.1 Requirement                                                |      |
|     |      | 8.3.2 Compliance                                                 |      |
|     | 8.4  | TC4 – MOU and TAC:                                               |      |
|     |      | 8.4.1 Requirement                                                | . 95 |
|     |      | 8.4.2 Compliance                                                 |      |
|     | 8.5  | TC5 – Thompson Falls Reservoir                                   |      |
|     |      | 8.5.1 Requirement                                                | . 95 |

|              |      | 8.5.2 Compliance                                                                                                                                                                   | 96        |
|--------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|              | 8.6  | TC6 – Systemwide Monitoring:                                                                                                                                                       | 96        |
|              |      | 8.6.1 Requirement                                                                                                                                                                  |           |
|              |      | 8.6.2 Compliance                                                                                                                                                                   | 97        |
|              | 8.7  | TC7 – Reporting                                                                                                                                                                    | 97        |
|              |      | 8.7.1 Requirement                                                                                                                                                                  |           |
|              |      | 8.7.2 Compliance                                                                                                                                                                   |           |
| 9.0          | Pro  | posed Activities for 2012                                                                                                                                                          | 101       |
|              | 9.1  | Baseline Fisheries Data Collection                                                                                                                                                 |           |
|              | 9.2  |                                                                                                                                                                                    |           |
|              |      | 9.2.1 Effectiveness of the Ladder and Operations                                                                                                                                   |           |
|              |      | 9.2.2 Evaluation of Fish Movement Patterns, Timing, and Beh                                                                                                                        |           |
|              |      | 9.2.3 Evaluation of Fallback                                                                                                                                                       |           |
|              | 9.3  |                                                                                                                                                                                    |           |
|              | 9.4  | • • • • • • • • • • • • • • • • • • • •                                                                                                                                            |           |
|              |      | 9.4.1 TDG Control Plan                                                                                                                                                             |           |
|              |      | 9.4.2 GBT Monitoring                                                                                                                                                               |           |
|              | 9.5  | •                                                                                                                                                                                  |           |
|              | 0.0  | 9.5.1 Bull Trout Genetic Monitoring                                                                                                                                                |           |
|              |      | 9.5.2 Five Valley Land Trust Proposal                                                                                                                                              |           |
| 10.0<br>Appe |      | erences                                                                                                                                                                            |           |
| Appe         | ndix | B – 2011 Bull Trout Radio Telemetry Data                                                                                                                                           | 206       |
| Appe         | ndix | C – 2010 West Fork Thompson River Data                                                                                                                                             | 236       |
|              |      | D – 2011 Fishtrap Creek Data                                                                                                                                                       | 250       |
| List c       |      |                                                                                                                                                                                    |           |
| Table 2      | 2-1: | Summary of abbreviations for fish identification, species common name, and so name.                                                                                                |           |
| Table 2      | 2-2: | Summary of gillnetting dates, number of nets set, total number of fish captured number of species represented during gillnetting activities in Thompson Falls F from 2004 to 2011. | Reservoir |
| Table 2      | 2-3: | Mean catch per net, by species, during annual October gillnetting series on The Falls Reservoir from 2004 to 2011.                                                                 |           |
| Table 2      | 2-4: | Summary of water temperatures measured in Thompson Falls Reservoir during electrofishing between 2007 and 2011.                                                                    |           |
| Table 2      | 2-5: | Summary of 2009, 2010, and 2011 spring electrofishing CPUE (fish per hour) i Thompson Falls Reservoir lower section.                                                               |           |
| Table 2      | 2-6: | Summary of 2009, 2010, and 2011 spring electrofishing CPUE (fish per hour) i Clark Fork River downstream of the confluence of the Thompson River (upper                            |           |

| Table 2-7:  | Fall electrofishing CPUE (fish per hour) in the Clark Fork River Above the Island Complex in 2009, 2010, and 201124                                                                                                                                                                                     |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2-8:  | Summary of CPUE (fish per hour) during 2010 and 2011 fall electrofishing in the Clark Fork River, including river left and river right, from Paradise to Plains26                                                                                                                                       |
| Table 2-9:  | Fish population estimates with the 95% confidence interval (CI) for rainbow trout (RB) and westslope cutthroat trout (WCT) captured in the Quinn's section in 201028                                                                                                                                    |
| Table 2-10: | Summary of other fish species observed or captured, including length and weight, during the fall electrofishing surveys in Quinn's section in 201028                                                                                                                                                    |
| Table 2-11: | Fish population estimates with the 95% confidence interval (CI) for rainbow trout (RB) and westslope cutthroat trout (WCT) captured in the Quinn's section in 201028                                                                                                                                    |
| Table 2-12: | Summary of other fish species observed or captured, including length and weight, during the fall electrofishing surveys in the St. Regis section in 201129                                                                                                                                              |
| Table 3-1:  | Summary of when the Thompson Falls Upstream Fish Ladder Facility was in operation and the number of days the ladder was checked for fish in 201131                                                                                                                                                      |
| Table 3-2:  | Summary of the number of fish and species observed at the fish ladder and recaptured at the fish ladder34                                                                                                                                                                                               |
| Table 3-3:  | Summary of the average and range of lengths (mm) and weights (g) for all species measured (n= represents number measured) at the fish ladder in 201135                                                                                                                                                  |
| Table 3-4:  | Summary of fallback; including initial date captured, fallback through turbines or spillway, recapture date, and the duration between the initial capture date and recapture; observed at the fish ladder. Fish #9 (in red) indicates the same individual fish was recaptured at the ladder three times |
| Table 3-5:  | Summary of PPL Montana PIT tagged trout detected downstream in Graves Creek by Avista between April 7 and August 1, 2011. Antenna (Ant) 1-3 located above trap site, 4-6 below trap                                                                                                                     |
| Table 3-6:  | Summary of fish species captured and PIT tagged during 2011 electrofishing efforts in March, May, June, and September 2011 downstream of the Thompson Falls Hydroelectric Project                                                                                                                       |
| Table 3-7:  | Summary of the fish initially PIT tagged below the Thompson Falls Hydroelectric Project in 2011 and recaptured at the ladder in 201140                                                                                                                                                                  |
| Table 3-8:  | Time (hours) for fish to ascend the ladder in 201140                                                                                                                                                                                                                                                    |
| Table 3-9:  | The total number of fish captured and by species at the ladder each day in August42                                                                                                                                                                                                                     |
| Table 3-10: | Summary of bull trout genetics from bull trout captured at the Thompson Falls fish ladder and captured via electrofishing downstream of Thompson Falls Hydroelectric Project in 2011. Genetic samples were analyzed at Abernathy in 2011. Results were provided by Avista Corporation (2012).           |
| Table 4-1:  | Summary of the 18 bull trout captured below Cabinet Gorge Dam in 2011, assigned to Region 4, and released in either Regions 2, 3 or 4. (Source: Avista 2011)53                                                                                                                                          |
| Table 4-2:  | Summary of radio telemetry monitoring of tagged bull trout captured below Cabinet Gorge Dam in 2011, assigned to Region 4, and released in Regions 3. (Source: Avista 2011).                                                                                                                            |
| Table 4-3:  | Summary of the radio and PIT tag for bull trout 3562                                                                                                                                                                                                                                                    |
| Table 4-4:  | Summary of the radio and PIT tag for bull trout 3763                                                                                                                                                                                                                                                    |
| Table 5-1:  | Summary of data available and bull trout presence in Thompson River drainage. Note: Stream Names in bold represent areas bull trout are known to be present. x = data available; y= bull trout documented                                                                                               |
| Table 5-2:  | Summary of density estimates for fisheries data collected during 2010 electrofishing in the West Fork Thompson River.                                                                                                                                                                                   |
| Table 5-3:  | Standardized density estimates for bull, rainbow, westslope cutthroat (WCT), rainbow x westslope cutthroat hybrid (RBxWCT), and mountain whitefish during electrofishing of Fishtrap Creek in 2011                                                                                                      |
|             | -                                                                                                                                                                                                                                                                                                       |

| Table 5-4:                                                                                            | Total and estimated (fish>75mm) number of bull (BULL), and westslope cutthroat trout (WCT), captured during electrofishing surveys of Jungle Creek in 201173                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 5-5:                                                                                            | Standardized density estimates for bull (BULL) and westslope cutthroat trout (WCT)in Beatrice Creek in 201173                                                                                                                                                                                                         |
| Table 5-6:                                                                                            | Standardized density estimates for bull (BULL) and westslope cutthroat trout (WCT) in West Fork Fishtrap Creek in 201174                                                                                                                                                                                              |
| Table 5-7:                                                                                            | Standardized density estimates for bull (BULL) and westslope cutthroat trout (WCT) in Beartrap Creek in 201174                                                                                                                                                                                                        |
| Table 6-1:                                                                                            | Sampling dates for biological sampling for gas bubble trauma in 201177                                                                                                                                                                                                                                                |
| Table 6-2:                                                                                            | Maximum TDG recorded over a range of discharge at the Birdland Bay Bridge on the Clark Fork River, Montana. 2003-201181                                                                                                                                                                                               |
| Table 6-3:                                                                                            | Mean TDG recorded over a range of discharge at the Birdland Bay Bridge on the Clark Fork River, Montana. 2003-201181                                                                                                                                                                                                  |
| Table 6-4:                                                                                            | Mean TDG Measured at the High Bridge over a range of flows, for the entire season, before June 9, and after June 988                                                                                                                                                                                                  |
| Table 6-5:                                                                                            | Number of fish evaluated for gas bubble trauma (GBT) and the number and types of fish observed to have symptoms of GBT89                                                                                                                                                                                              |
| Table 8-1:                                                                                            | Cumulative incidental "take" of bull trout for the Thompson Falls Project, since January 1, 2009. Note: EF = electrofishing100                                                                                                                                                                                        |
| Table 9-1:                                                                                            | Summary of the objectives, studies, and reporting requirements for the Fish Passage Evaluation Plan 2011-2020. Annual activities are indicated by an "x." A dash (-) indicates no action will be taken for the year. TBD represents "to be determined." (Table was taken from the Fish Passage Evaluation Plan, 2010) |
| List of Fig                                                                                           | gures                                                                                                                                                                                                                                                                                                                 |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                       |
| Figure 2-1:                                                                                           | Baseline Fisheries Sampling Locations                                                                                                                                                                                                                                                                                 |
| Figure 2-1:<br>Figure 2-2:                                                                            | Baseline Fisheries Sampling Locations                                                                                                                                                                                                                                                                                 |
| •                                                                                                     |                                                                                                                                                                                                                                                                                                                       |
| Figure 2-2:                                                                                           | Fall Electrofishing Sampling Location between Paradise and Plains                                                                                                                                                                                                                                                     |
| Figure 2-2:<br>Figure 2-3:                                                                            | Fall Electrofishing Sampling Location between Paradise and Plains                                                                                                                                                                                                                                                     |
| Figure 2-2:<br>Figure 2-3:<br>Figure 2-4:                                                             | Fall Electrofishing Sampling Location between Paradise and Plains                                                                                                                                                                                                                                                     |
| Figure 2-2:<br>Figure 2-3:<br>Figure 2-4:<br>Figure 2-5:                                              | Fall Electrofishing Sampling Location between Paradise and Plains                                                                                                                                                                                                                                                     |
| Figure 2-2:<br>Figure 2-3:<br>Figure 2-4:<br>Figure 2-5:<br>Figure 2-6:                               | Fall Electrofishing Sampling Location between Paradise and Plains                                                                                                                                                                                                                                                     |
| Figure 2-2:<br>Figure 2-3:<br>Figure 2-4:<br>Figure 2-5:<br>Figure 2-6:<br>Figure 2-7:                | Fall Electrofishing Sampling Location between Paradise and Plains                                                                                                                                                                                                                                                     |
| Figure 2-2:<br>Figure 2-3:<br>Figure 2-4:<br>Figure 2-5:<br>Figure 2-6:<br>Figure 2-7:<br>Figure 3-1: | Fall Electrofishing Sampling Location between Paradise and Plains                                                                                                                                                                                                                                                     |
| Figure 2-2: Figure 2-3: Figure 2-4: Figure 2-5: Figure 2-6: Figure 2-7: Figure 3-1: Figure 3-2:       | Fall Electrofishing Sampling Location between Paradise and Plains                                                                                                                                                                                                                                                     |

| Figure 3-6:              | 2011. Mean daily streamflow in the Clark Fork River at Thompson Falls Hydroelectric Project is also provided. Cumulative fish totals provided for each weir mode represent days the ladder was in operation                                                                                                        |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 3-7:              | Percentage of species caught in the ladder during v-notch versus orifice mode during the 2011 season                                                                                                                                                                                                               |
| Figure 3-8:              | Mean daily streamflows at Thompson Falls Hydroelectric Project when the ladder was in operation and the number of fish captured per day at the ladder with and without attractant flow (AF). The y-axis ends at 275 fish per day; however, a total of 874 fish were caught on August 23, 201148                    |
| Figure 3-9:              | Percentage of each species and hybrid captured in the ladder with and without the presence of the attractant flow during the 2011 season49                                                                                                                                                                         |
| Figure 3-10:             | Number of salmonids caught in the ladder with and without the attractant flow during the 2011 season50                                                                                                                                                                                                             |
| Figure 4-1:              | Radio telemetry monitoring results for bull trout 26 detected near Thompson Falls Dam in 201158                                                                                                                                                                                                                    |
| Figure 4-2:              | Radio telemetry monitoring results for bull trout 38 detected near Thompson Falls Dam in 201160                                                                                                                                                                                                                    |
| Figure 4-3:              | Radio telemetry monitoring results for bull trout 40 detected near Thompson Falls Dam in 201161                                                                                                                                                                                                                    |
| Figure 5-1:              | Site locations where 2010 fisheries surveys were completed in the West Fork Thompson River                                                                                                                                                                                                                         |
| Figure 5-2:              | Map of the 2011 Fishtrap Creek electrofishing survey locations70                                                                                                                                                                                                                                                   |
| Figure 6-1:              | Monitoring locations for total dissolved gas at the Thompson Falls Hydroelectric Project site                                                                                                                                                                                                                      |
| Figure 6-2:              | Discharge in the Clark Fork River in 2011 compared to the long-term average. 2011 data were collected by continuous recorded by PPL Montana at the Thompson Falls Hydroelectric Project site. The long-term average is mean daily flow at the U.S. Geological Survey gage at Plains # 12389000, from 1911 – 201078 |
| Figure 6-3:              | Mean daily discharge in the Clark Fork River from April 1 to July 31 in each of the years when TDG data has been collected at the Thompson Falls Hydroelectric Project site. Data collected at the U.S. Geological Survey gage station at Plains, Montana, Station # 12389000                                      |
| Figure 6-4:              | Total Dissolved Gas (% of saturation) and discharge (cfs) in the Clark Fork River upstream and downstream of the Thompson Falls Hydropower Project in 201180                                                                                                                                                       |
| Figure 6-5:              | Operational Plan for the Main Dam Spillway applied in 201184                                                                                                                                                                                                                                                       |
| Figure 6-6:              | Total Dissolved Gas measurements up to 85,000 cfs at the Birdland Bay Bridge at varying levels of discharge in 2011, and in prior years when the Main Dam Spillway was operated on a "fish" and "non-fish" spill schedule                                                                                          |
| Figure 6-7:              | TDG by discharge, measured at the High Bridge on the Clark Fork River in 201186                                                                                                                                                                                                                                    |
| Figure 6-8:              | TDG by discharge, measured at the Birdland Bay Bridge on the Clark Fork River in 201187                                                                                                                                                                                                                            |
| Figure 6-9:              | The Main Dam Spillway at Thompson Falls Hydroelectric Project. Note that two spillway panels have been removed. When the stanchions are tripped, the panels underneath are removed to allow additional water and debris to pass over the spillway                                                                  |
| List of Ph               | otos                                                                                                                                                                                                                                                                                                               |
| Photo 6-1:<br>Photo 6-2: | The right and center of the Main Dam, with bays numbered                                                                                                                                                                                                                                                           |

## **Executive Summary**

PPL Montana, LCC is owner and operator of the Thompson Falls Hydroelectric Project (No. 1869), located on the Clark Fork River near Thompson Falls, Montana. The current Federal Energy Regulatory Commission (FERC or Commission) License was issued to Montana Power Company (now PPL Montana) in 1979 and is scheduled to expire on December 31, 2025.

In 1998, the bull trout (*Salvelinus confluentus*) was federally-listed under the Endangered Species Act as a threatened species. Critical habitat was designated in 2005 and revised in 2010. PPL Montana conducted 5 years of studies and filed a Biological Evaluation with the Commission on April 7, 2008 discussing the effects of the Thompson Falls Project on bull trout and proposed conservation measures.

The 2008 Biological Evaluation was adopted as the Commission's final Biological Assessment and submitted to the U.S. Fish and Wildlife Service (FWS) on May 1, 2008. On November 4, 2008 the FWS filed with the Commission a Biological Opinion and an associated Incidental Take Statement, which includes reasonable and prudent measures, and Terms and Conditions to minimize incidental take of bull trout. On February 12, 2009 the Commission issued an Order Approving Construction and Operation of Fish Passage Facilities for the Thompson Falls Project. This order included the reasonable and prudent measures, Terms and Conditions, and conservation recommendations from the Biological Opinion. The FERC agreed with the FWS's conclusion that the Thompson Falls Project is currently adversely affecting bull trout and PPL Montana's proposed conservation measures will reduce, but not totally eliminate, adverse impacts of the Project.

The FERC Order required PPL Montana to file with the Commission, by April 1 of each year through the remainder of the License, the annual report referenced in Term 7a of the FWS's Terms and Conditions. In addition to the requirements stipulated in Term 7a, the annual report shall also address the Licensee's compliance with the FWS's Terms and Conditions.

This report is intended to fulfill the annual reporting requirement, as specified in Term 7a of the Biological Opinion and the requirements of the FERC Order. This report summarizes PPL Montana's 2011 activities (Sections 2.0 through 7.0), PPL Montana's compliance with the FWS's Terms and Conditions of the Biological Opinion (Section 8.0), and PPL Montana's proposed actions in 2012 (Section 9.0).

#### **Baseline Fisheries Studies**

In 2011, PPL Montana continued to collect baseline fisheries data as presented in Section 2.0 of this report. Baseline fisheries data includes spring electrofishing in Thompson Falls Reservoir, fall electrofishing in Thompson Falls Reservoir above the Island Complex, fall electrofishing between the towns of Paradise and Plains in the Clark Fork River, and fall gillnetting in

Thompson Falls Reservoir. Montana Fish, Wildlife and Parks (FWP) also provided electrofishing data for two sections surveyed in the middle Clark Fork River in 2010 and 2011 that are included in this section.

## **Upstream Fish Passage (10-Year Fish Passage Evaluation Plan)**

In 2011, the FERC issued two Orders, one on June 9, 2011 approving PPL Montana's 10-year Fish Passage Facility Evaluation Plan Phase 2 Action Plan (2011-2020) (Fish Passage Evaluation Plan) and the second on June 17, 2011 approving PPL Montana's Final Thompson Falls Fish Ladder – Fishway Operations Manual 1.0. The upstream fish passage facility (fish ladder) became operational in 2011. PPL Montana implemented the first year of studies outlined in the Fish Passage Evaluation Plan and the 2011 data are presented in Section 3.0.

The upstream fish passage facility commenced operation on March 17, 2011 and was winterized on October 17, 2011. During ladder operations, approximately 1,805 fish representing 10 species and one hybrid, including two bull trout, ascended the ladder. The first bull trout ascended the entire ladder and the second bull trout was caught in a lower ladder pool during an operation change in weir mode. Fish that ascended the ladder and released upstream were marked via fin clip, visible implant elastomer (VIE) tag, or Passive Integrated Transponder (PIT) tag. Of the 1,805 fish that ascended the ladder, a total of 1,722 fish were released upstream into the Thompson Falls Reservoir. A total of 83 fish (80 non-salmonids, two rainbow trout, and one lake trout) were not released upstream, primarily due to mortality at the ladder associated with mechanical issues (since corrected). Lake trout and walleye were not authorized by FWP for release upstream if captured in the ladder. In 2011, one lake trout and zero walleye were captured at the ladder. Additional details summarizing the number and size of fish and species, timing of fish ascending the ladder, recaptures, fallback, etc., are provided in Section 3.0.

## **Avista Bull Trout Passage and Monitoring**

Avista Corporation (Avista) continued their Upstream Fish Passage Program, including trap and haul, in 2011. Avista captured a total of 64 unique bull trout below Cabinet Gorge Hydroelectric Project of which 18 were genetically assigned to natal streams located in Region 4 (i.e. upstream of Thompson Falls Dam). Five of the 18 bull trout were transported to Region 4; with four of the five bull trout released in the Thompson River and one bull trout released in the South Fork Jocko River. Eleven of the 18 bull trout were released in Noxon Reservoir (Region 3) upstream of Vermilion Bay; with eight bull trout implanted with radio transmitters (and PIT tags) and three bull trout released with PIT tags and no radio transmitters. Although the 11 bull trout that were genetically assigned to Region 4, these fish were released in Region 3 to monitor and evaluate movement to the Thompson Falls fish ladder. The remaining two bull trout captured below Cabinet Gorge Hydroelectric Project and genetically assigned to Region 4 had been previously captured as juveniles in Regions 2 and 3 tributary streams and thus were released back to these tributary streams in Regions 2 and 3, respectively.

Of the eight radio tagged fish in 2011, Avista monitored two bull trout (referred to as Bull Trout 35 and Bull Trout 37) and FWP monitored six bull trout (referred to as Bull Trout 26, 29, 36, 38, 39, and 40). Two bull trout initially tagged in 2010 (bull trout 30 and 32) were also detected and monitored in 2011 by FWP. During the 2011 monitoring effort, three bull trout (bull trout 26, 38, 40) were detected via radio telemetry immediately downstream of Thompson Falls Dam in the months of June and/or July 2011. A summary of bull trout transported upstream and movements of the bull trout monitored in 2011 is provided in Section 4.0. A table detailing bull trout detections during the radio telemetry monitoring period is also available in Table B-1 in Appendix B.

#### **Total Dissolved Gas**

In 2011, Total Dissolved Gases (TDG) were monitored from April 8 to July 27. Monitoring sites were 1) above dam, 2) High Bridge, and 3) Birdland Bay Bridge. The High Bridge monitoring site captures information on TDG at a location that is downstream of the Main Dam spillway and the falls, but is upstream where the Dry Channel Dam spill enters the river. The Birdland Bay Bridge monitoring site captures information on the level of TDG entering Noxon Rapids Reservoir. All three sensors suffered failures during some periods during the 2011 monitoring season. However, the data recovery is sufficiently complete to draw conclusions on TDG in the Clark Fork River during 2011.

Peak discharge in the Clark Fork River in the project area in 2011 was approximately twice as much as the long-term average, reaching approximately 120,000 cfs in mid-June 2011. In addition, the high flow period lasted about twice as long as is typical; with river flow in excess of 60,000 cfs until mid-July 2011. Clark Fork River flows in the area of the Thompson River Hydroelectric Project were significantly higher in 2011 than in any other year since the TDG study began in 2003.

TDG upstream of the Thompson Falls Hydroelectric Project peaked at approximately 108 percent of saturation during 2011. TDG levels at the High Bridge approached 130 percent of saturation, and TDG at the Birdland Bay Bridge site was approximately 122 percent of saturation in 2011. These readings were higher than recorded in previous years at these locations, corresponding to the higher streamflows. The unusually high TDG readings in 2011 occurred during the time period when the Clark Fork River was flowing in excess of 70,000 cfs.

The report includes recommendations for TDG management in the project area, in Section 6.

## **Gas Bubble Trauma Monitoring**

PPL Montana continued to monitor for gas bubble trauma (GBT) in fish sampled below the Thompson Falls Hydroelectric Project in 2011. In 2011, higher TDG resulted in a higher number of fish detected with GBT symptoms. Of the 949 fish examined, 67 fish were noted to exhibit external symptoms of GBT, seven were noted to have bubbles and one rainbow trout was noted to have exophthalmia ('pop eye'). All the other external symptoms noted were minor.

## **Thompson River Drainage (5-Year Reservoir Plan)**

In 2010, PPL Montana developed and submitted the 5-Year Reservoir Monitoring Plan (2011-2015) to the FERC. The FERC issued an Order on February 9, 2011 approving the plan. PPL Montana started to implement the plan in 2011.

The overall goal of the Reservoir Plan is to gather information that will assist in developing recommendations to *maximize survival of outmigrant juvenile and adult bull trout through Thompson Falls Reservoir and Dam*. In order to address this goal, two objectives were identified including the:

- 1. Characterization of bull trout in the Thompson River drainage
- 2. Characterization of the affect that the Thompson Falls Reservoir has on bull trout emigrating from the Thompson River drainage and migrating downstream in the Clark Fork River.

To address the first objective, PPL Montana coordinated with the Thompson Falls Technical Advisory Committee (TAC), FWS, Plum Creek Timber Company, Avista, and U.S. Forest Service (USFS) to review available historic data, available literature, identify data gaps and develop a plan for future data collection/studies/projects in the Thompson River drainage. As a result of the data collected, PPL Montana developed a Thompson River database to assist in evaluating available information and assessing data gaps. A detailed description of the Thompson River drainage database and process of developing the database is provided in Section 5.1.1.

FWP completed a fisheries survey of West Fork Thompson River drainage in 2010. These data are summarized in Section 5.2. The raw data are provided in Appendix C of this report.

Avista completed a fisheries survey of Fishtrap Creek drainage in 2011. A summary of these data and the salmonids observed and recorded is provided in Section 5.3.1. The raw data are provided in Appendix D of this report.

#### **Bull Trout Incidental "Take"**

In 2011, PPL Montana collected a total of five bull trout, all of which were released live. Three bull trout were collected via electrofishing downstream of the Thompson Falls Hydroelectric Project on May 31, 2011. The three bull trout were released live after measurements of length and weight were recorded, a genetic sample was taken, and a PIT tag was implanted. The three bull trout measured 180 millimeters (mm) and 50 grams (g); 247 mm and 130 g; and 482 mm and 966 g, respectively. Genetic samples indicate these fish originated from natal streams in Region 4. Additional details of the three bull trout are provided in Section 8.7.

In 2011, two bull trout ascended the Thompson Falls fish ladder and were released live upstream in the Thompson Falls Reservoir after measurements of length and weight were recorded, a genetic sample was taken, and a PIT tag implanted. Lengths and weights of the bull trout were

365 mm and 364 g; and 547 mm and 1,438 g, respectively. Both fish were genetically assigned to Region 4. Additional details of the two bull trout are provided in Section 8.7.

## **2011 TAC Funded Projects**

In 2011, PPL Montana allocated approximately \$5,582 to bull trout genetic analysis from samples collected in the Clark Fork River drainage to improve the genetic baseline database. Genetic samples were taken from juvenile bull trout in the Fishtrap Creek drainage in 2011 and also from bull trout collected in the Clark Fork River in the project area. Results from the Fishtrap Creek sample were not available at the time this report was prepared. Results from the Clark Fork River are included in Section 7.1.1. A description of this project is provided in Section 7.0.

#### Introduction 1.0

#### 1.1 **Background**

PPL Montana is owner and operator of the Thompson Falls Hydroelectric Project (No. 1869), located on the Clark Fork River near Thompson Falls, Montana. The current Federal Energy Regulatory Commission (FERC or Commission) License was issued to Montana Power Company (now PPL Montana) in 1979 and is scheduled to expire on December 31, 2025.

In 1998, the bull trout (Salvelinus confluentus) was federally-listed under the Endangered Species Act (ESA) as a threatened species (Federal Register, 1998). Critical habitat was designated in 2005 (Federal Register, 2005) and revised in 2010 (Federal Register, 2010). U.S. Fish and Wildlife Service (FWS) proposed a revision to the critical habitat designation on January 13, 2010. The Final Critical Habitat Designation Rule for bull trout was submitted by FWS on September 30, 2010 and was effective as of November 17, 2010. The Thompson Falls Project area is within the designated critical habitat for bull trout. Because bull trout are present within the Project area, a draft Biological Evaluation was prepared for the Thompson Falls Project and submitted to the FWS and FERC in 2003.

After 5 years of studies, PPL Montana filed a new Biological Evaluation discussing the effects of the Thompson Falls Project on bull trout and proposed conservation measures with the Commission on April 7, 2008. PPL Montana's Biological Evaluation identified several factors directly related to project operation that negatively impact bull trout in the Clark Fork River. Inhibition of upstream migration and access to spawning habitat by the Thompson Falls Hydroelectric Project was identified as a major concern. Consequently, PPL Montana proposed to install a full height fishway at the Project and filed 90-percent drawings for the structure on April 7, 2008. The filing also contained a Memorandum of Understanding (MOU) signed by PPL Montana, the Confederated Salish and Kootenai Tribes of the Flathead Nation (CSKT), Montana Fish Wildlife and Parks (FWP), and FWS (MOU, 2008).<sup>1</sup>

The Commission concluded that the Thompson Falls Project is adversely affecting bull trout and the proposed conservation measures will reduce, but not totally eliminate, the Project's adverse effects on bull trout. The 2008 Biological Evaluation was adopted as the Commission's final Biological Assessment and submitted to the FWS on May 1, 2008.

On November 4, 2008 the FWS filed with the Commission a Biological Opinion and associated Incidental Take Statement, which includes reasonable and prudent measures and Terms and Conditions to minimize incidental take of bull trout. The FWS concluded in its Biological Opinion that the

<sup>&</sup>lt;sup>1</sup> The MOU provides Terms and Conditions regarding the collaboration between the Licensee and the FWS, FWP, and CSKT and the implementation of minimization measures for bull trout.

Thompson Falls Project is currently adversely affecting bull trout and PPL Montana's proposed conservation measures will reduce, but not totally eliminate, adverse impacts of the Project.

On February 12, 2009 the Commission issued an Order Approving Construction and Operation of Fish Passage Facilities for the Thompson Falls Project. This order included the reasonable and prudent measures, Terms and Conditions, and conservation recommendations from the FWS Biological Opinion.

## 1.2 Compliance with the FERC Order

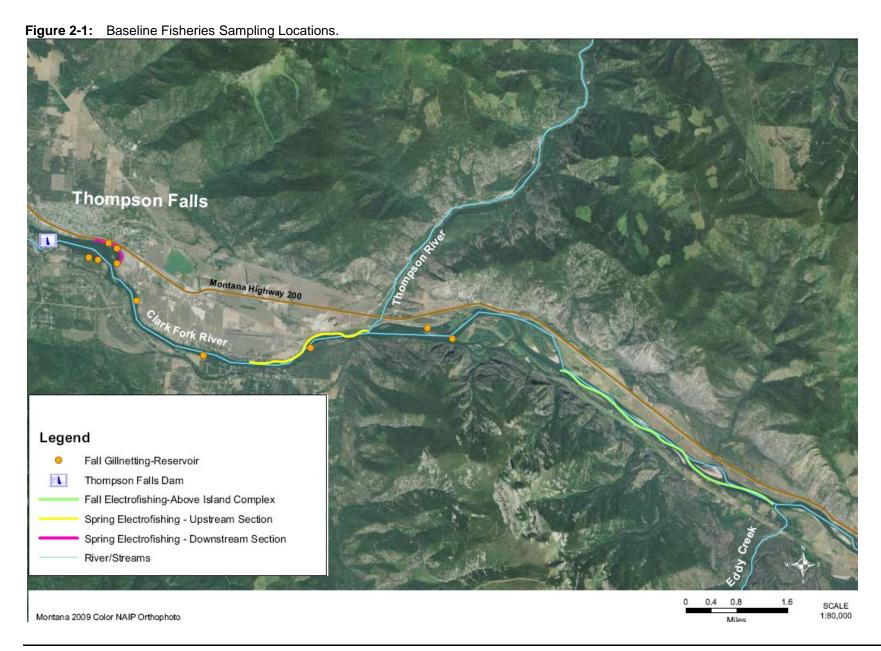
The FERC Order required PPL Montana to file with the Commission for approval, study and operational plans referenced in the FWS's Terms and Conditions (TC) numbers 1 through 7, after development and approval by the FWS and the Thompson Falls Technical Advisory Committee (TAC). In order for the Commission to ensure compliance with the FWS's Terms and Conditions, PPL Montana is required to file with the Commission, by April 1 of each year through the remainder of the License, the annual report referenced in Term 7a<sup>2</sup> of the FWS's Terms and Conditions. In addition to the requirements stipulated in Term 7a the report should also address the Licensee's compliance with the FWS's Terms and Conditions.

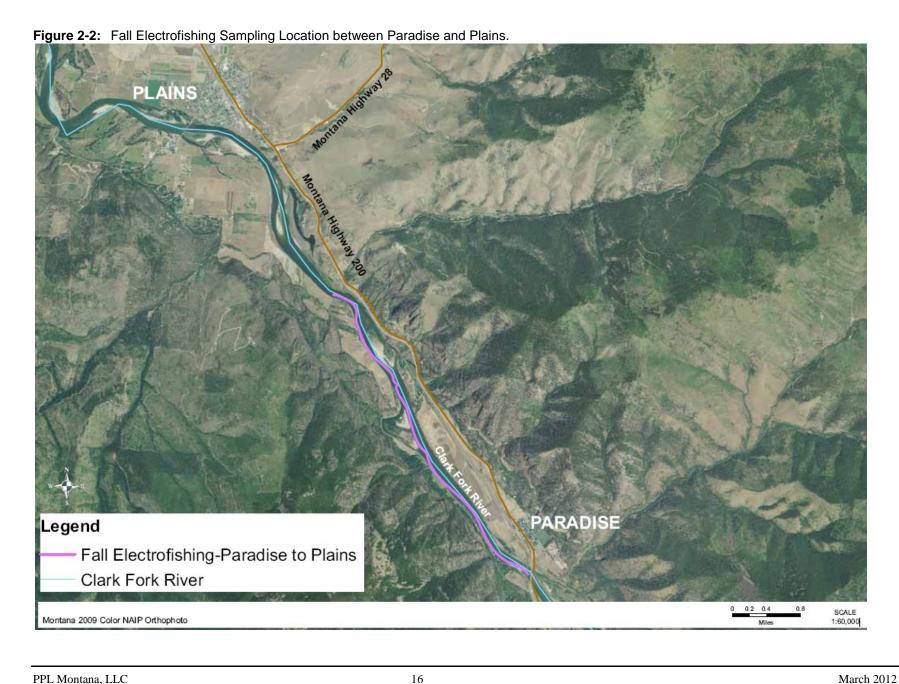
This report is intended to fulfill the annual reporting requirement, as specified in Term 7a of the Biological Opinion and the requirements of the FERC Order. This report summarizes PPL Montana's 2011 activities in Sections 2.0 through 7.0, PPL Montana's compliance with the FWS's Terms and Conditions of the Biological Opinion (Section 8.0), and PPL Montana's proposed actions in 2012 (Section 9.0).

cumulative extent of incidental take from all previous year activities."

\_\_\_

<sup>&</sup>lt;sup>2</sup> Term 7a states, "Annually, by April 1 of each year for the remainder of the License (expires 2025), PPL Montana will prepare and submit to the Service for approval a report of the previous year's activities, fish passage totals, and next year's proposed activities and other fisheries monitoring that may result in intentional as well as incidental take of bull trout. The report will quantify the number of bull trout proposed to be incidentally taken by each activity and summarize the


## 2.0 Baseline Fisheries Studies


Fisheries monitoring of the Thompson Falls Reservoir using gillnets and electrofishing has been conducted annually, within the same general time frame, since 2004. The locations for fall and spring electrofishing and fall gillnetting are displayed in Figures 2-1 and 2-2. In 2010, PPL Montana added a new upstream electrofishing site in the Clark Fork River upstream of the Thompson Falls Hydroelectric Project between the towns of Plains and Paradise, Montana. This site was electrofished in the fall of 2010 and 2011 and PPL Montana proposes to continue sampling this reach of the Clark Fork River through 2014 (5 years of sampling).

The main objective for these annual sampling efforts is to establish baseline information on species composition and relative abundance within the reservoir and upstream of Thompson Falls Reservoir. This information will help track changes to the fish community annually and over a long period of time. This is especially important with the newly constructed full height fish ladder at Thompson Falls Hydroelectric Project that commenced operations in spring 2011. This is one monitoring tool that gives managers the ability to track potential system wide changes with fish passing into the Thompson Falls Reservoir from downstream.

Table 2-1: Summary of abbreviations for fish identification, species common name, and scientific name.

| Fish<br>Abbreviation | Common Name                          | Scientific Name                                      |
|----------------------|--------------------------------------|------------------------------------------------------|
| BL BH                | Black bullhead                       | Ameiurus melas                                       |
| BULL                 | Bull Trout                           | Salvelinus confluentus                               |
| LL                   | Brown trout                          | Salmo trutta                                         |
| LMB                  | Largemouth bass                      | Micropterus salmoides                                |
| LN DC                | Longnose dace                        | Rhinichthys cataractae                               |
| LN SU                | Longnose sucker                      | Catostomus catostomus                                |
| LC SU                | Largescale sucker                    | Catostomus macrocheilus                              |
| LT                   | Lake trout                           | Salvelinus namaycush                                 |
| LWF                  | Lake Whitefish                       | Coregonus clupeaformis                               |
| MWF                  | Mountain whitefish                   | Prosopium williamsoni                                |
| NP                   | Northern pike                        | Esox lucius                                          |
| N PMN                | Northern pikeminnow                  | Ptychocheilus oregonensis                            |
| PEA                  | Peamouth                             | Mylocheilus caurinus                                 |
| PUMP                 | Pumpkinseed                          | Lepomis gibbosus                                     |
| RB                   | Rainbow trout                        | Oncorhynchus mykiss                                  |
| RBxWCT               | Rainbow x Westslope cutthroat hybrid | Oncorhynchus clarkii lewisi x<br>Oncorhynchus mykiss |
| RS SH                | Redside shiner                       | Richardsonius balteatus                              |
| SMB                  | Smallmouth bass                      | Micropterus dolomieu                                 |
| WCT                  | Westslope cutthroat trout            | Oncorhynchus clarkii lewisi                          |
| WE                   | Walleye                              | Sander vitreus                                       |
| YP                   | Yellow perch                         | Perca flavescens                                     |





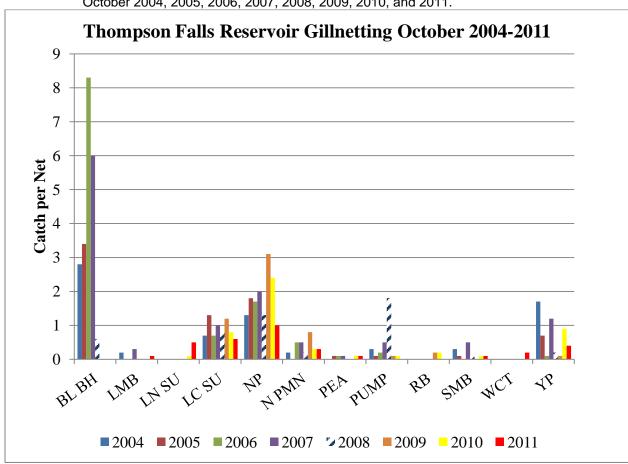
## 2.1 Fall Gillnetting

Fall gillnetting in Thompson Falls Reservoir has been performed in designated locations since 2004 (see Figure 2-1). Fall gillnetting occurs in October each year and 10 gillnets are set each year with the exception of the 2004 sampling year where only six nets were set (Table 2-2).

Summary of gillnetting dates, number of nets set, total number of fish captured, and total number of species represented during gillnetting activities in Thompson Falls Reservoir from 2004 to 2011.

| Year | # Gillnets | Date set | Date pulled | Total Fish<br>Captured | Number of Species |
|------|------------|----------|-------------|------------------------|-------------------|
| 2004 | 6          | 10/13    | 10/14       | 48                     | 8                 |
| 2005 | 10         | 10/13    | 10/14       | 79                     | 7                 |
| 2006 | 10         | 10/12    | 10/13       | 116                    | 7                 |
| 2007 | 10         | 10/11    | 10/12       | 122                    | 9                 |
| 2008 | 10         | 10/8     | 10/9        | 59                     | 7                 |
| 2009 | 10         | 10/19    | 10/20       | 55                     | 6                 |
| 2010 | 10         | 10/14    | 10/15       | 50                     | 9                 |
| 2011 | 10         | 10/5     | 10/6        | 33                     | 9                 |

The 2011 annual fall gillnet monitoring of Thompson Falls Reservoir began on October 5 by setting a 125-foot-long by 6-foot-wide variable mesh net at each of the 10 established locations in Thompson Falls Reservoir (see Figure 2-1). Nets were set for approximately 18 to 20 hours and pulled on October 6. The mean catch per net has varied widely by species and between years (Table 2-3, Figure 2-3). Lengths and weights were recorded for all fish captured via gillnetting in 2011 and the data are provided in Appendix A.


A total of 33 fish representing nine species were captured during the 2011 gillnetting efforts. This was the lowest total number of fish caught via gillnetting since monitoring began in 2004. There were no black bullheads captured in 2009, 2010, or 2011. Black bullheads were the predominant fish caught between 2004 and 2008.

The low number of fish caught in the gillnets in 2011 compared to previous years may be a result of the Thompson Falls Reservoir drawdown of up to 13 feet below full pool in August. In the summer of 2011, PPL Montana drew down the reservoir in order to replace stanchions on the dam. The maintenance work resulted in the reservoir drawdown of about 10 feet by the end of July and an additional 3 feet (total 13 feet below full pool) between August 7 and 19. The drawdown of 10 to 13 feet resulted in a riverine environment in the reservoir area, which substantially reduced the lacustrine habitat typically available at full pool. Thompson Falls Reservoir returned to full pool August 22.

Table 2-3: Mean catch per net, by species, during annual October gillnetting series on Thompson Falls Reservoir from 2004 to 2011.

| Species | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
|---------|------|------|------|------|------|------|------|------|
| BL BH   | 2.8  | 3.4  | 8.3  | 6    | 0.6  | 0    | 0    | 0    |
| LMB     | 0.2  | 0    | 0    | 0.3  | 0    | 0    | 0    | 0.1  |
| LN SU   | 0    | 0    | 0    | 0    | 0    | 0    | 0.1  | 0.5  |
| LC SU   | 0.7  | 1.3  | 0.7  | 1    | 0.8  | 1.2  | 0.8  | 0.6  |
| NP      | 1.3  | 1.8  | 1.7  | 2    | 1.3  | 3.1  | 2.4  | 1.0  |
| N PMN   | 0.2  | 0    | 0.5  | 0.5  | 0.2  | 0.8  | 0.3  | 0.3  |
| PEA     | 0.0  | 0.1  | 0.1  | 0.1  | 0    | 0    | 0.1  | 0.1  |
| PUMP    | 0.3  | 0.1  | 0.2  | 0.5  | 1.8  | 0.1  | 0.1  | 0    |
| RB      | 0    | 0    | 0    | 0    | 0    | 0.2  | 0.2  | 0    |
| SMB     | 0.3  | 0.1  | 0    | 0.5  | 0.1  | 0    | 0.1  | 0.1  |
| WCT     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0.2  |
| YP      | 1.7  | 0.7  | 0.1  | 1.2  | 0.2  | 0.1  | 0.9  | 0.4  |

In 2011 northern pike was the most abundant species with 10 individuals captured. Other species captured in 2011 included largescale sucker (n=6), longnose sucker (n=5), yellow perch (n=4), northern pikeminnow (n=3), westslope cutthroat trout (n=2), largemouth bass (n=1), peamouth (n=1), smallmouth bass (n=1) (see Figure 2-3). This was the first year that westslope cutthroat trout were collected in the gill netting. There were no black bullheads, pumpkinseeds, or rainbow trout collected in 2011. These species have been collected in the past. This was the first year where pumpkinseeds were absent from the sample.



**Figure 2-3:** Summary of species caught per net during gillnetting in the Thompson Falls Reservoir in October 2004, 2005, 2006, 2007, 2008, 2009, 2010, and 2011.

## 2.2 Spring Electrofishing

Spring electrofishing in Thompson Falls Reservoir consists of two locations, including the lower section (also referred to as the "pond") located immediately upstream of Thompson Falls Hydroelectric Project and the upper section located immediately downstream of the confluence with the Thompson River (*see* Figure 2-1). Spring electrofishing is conducted using boat mounted electrofishing equipment. The boat is navigated slowly along the shoreline after daylight hours. The downstream section is parallel with Highway 200 from Wild Goose Landing boat launch, upstream to a location approximately 750 feet above the pump house. The upstream section is on the right bank of the Clark Fork River from the confluence of the Thompson River to the Cherry Creek boat launch. The upstream site has riverine characteristics, with noticeable flowing water, average widths around 459 feet, little to no aquatic vegetation and some recreational docks. The downstream site has substantially lower water velocity, mean widths near 1,673 feet, abundant aquatic vegetation, and is off the main river channel.

In 2011 sampling occurred on April 13 and 14, which was similar to the sampling dates from previous years as shown in Table 2-4. The water temperatures in 2011 were the coldest recorded during the spring sampling efforts that began in 2007 (Table 2-4).

Summary of water temperatures measured in Thompson Falls Reservoir during spring electrofishing between 2007 and 2011.

| Date           | Temperature,<br>Lower Section | Date           | Temperature,<br>Upper Section |
|----------------|-------------------------------|----------------|-------------------------------|
| April 13, 2011 | 5.8°C                         | April 14, 2011 | 5.1°C                         |
| April 28, 2010 | 9°C                           | April 29, 2010 | 7.5°C                         |
| April 20, 2009 | 10°C                          | April 21, 2009 | 10.5°C                        |
| April 21, 2008 | 8°C                           | April 14, 2008 | 8.5°C                         |
| April 21, 2006 | 0                             | April 17, 2008 | 9°C                           |
| March 26, 2007 | 6.5°C                         | March 27, 2007 | 6°C                           |

Summaries of 2009, 2010, and 2011 catch per unit effort (CPUE, fish per hour) are provided in Tables 2-5 and 2-6 for the lower and upper sections, respectively. The CPUE (fish per hour), by species, for the spring electrofishing in 2009 through 2011 are displayed for the lower section and upper section in Figure 2-4 and Figure 2-5, respectively. Data for all fish collected and measurements taken in the lower and upper sections in 2011 are available in Appendix A.

#### 2.2.1 Lower Section

In 2011, spring electrofishing in the lower section captured a total of 34 fish representing eight species. The species included 17 northern pike, seven largemouth bass, five pumpkinseed, one largescale sucker, one northern pikeminnow, one rainbow trout, one westslope cutthroat trout, and one yellow perch (Table 2-5). Although the total number of fish captured in 2011 was lower than previous years, this was the first year a rainbow trout was captured in the lower section.

Summary of 2009, 2010, and 2011 spring electrofishing CPUE (fish per hour) in Table 2-5: Thompson Falls Reservoir lower section.

| Species            | Lower Section 2009 |      | Lower Section 2010 |      | Lower Section 2011 |      |
|--------------------|--------------------|------|--------------------|------|--------------------|------|
| Species            | Number             | CPUE | Number             | CPUE | Number             | CPUE |
| BL BH              | 2                  | 3.4  | 1                  | 1.1  | 0                  | 0    |
| LMB                | 20                 | 34.0 | 3                  | 3.3  | 7                  | 6.9  |
| LC SU              | 11                 | 18.7 | 3                  | 3.3  | 1                  | 1.0  |
| NP                 | 10                 | 17.0 | 14                 | 15.2 | 17                 | 16.8 |
| N PMN              | 7                  | 12.0 | 1                  | 1.1  | 1                  | 1.0  |
| PUMP               | 2                  | 3.4  | 2                  | 2.2  | 5                  | 4.9  |
| RB                 | 0                  | 0    | 0                  | 0    | 1                  | 1.0  |
| RS SH              | 1                  | 1.7  | 0                  | 0    | 0                  | 0    |
| WCT                | 1                  | 1.7  | 1                  | 1.1  | 1                  | 1.0  |
| YP                 | 3                  | 5.1  | 25                 | 27.2 | 1                  | 1.0  |
| SubTotal Salmonids | 1                  | 1.7  | 1                  | 1.1  | 2                  | 2.0  |
| TOTAL FISH         | 57                 | 100  | 50                 | 54.3 | 34                 | 33.7 |

**Spring Electrofishing - Thompson Falls Reservoir** (Lower Section) 35 30 25 Catch Per Unit Effort (Fish per hour) 20 15 10 5 BL BH LMB LC SU NP PUMP RB RS SH WCT YP N **PMN** 2009 (n = 57)2010 (n = 50)2011 (n = 34)

Figure 2-4: Summary of CPUE (fish per hour) during electrofishing in the Clark Fork River/Thompson Falls Reservoir (lower section) in the spring 2009, 2010, and 2011.

CPUE (fish per hour) in the lower section appeared to decline in 2011 for largescale suckers, northern pikeminnow, and yellow perch compared to previous years. CPUE (fish per hour) for northern pike appears to have remained relatively constant since 2009 (Figure 2-4). Overall, CPUE for all species combined declined in 2011, but the CPUE for salmonids has not fluctuated much.

#### 2.2.2 Upper Section

The spring 2011 sampling efforts in the upper section resulted in the highest number of total fish captured and trout captured since sampling efforts began in 2009 (Table 2-6). The 2011 sampling of the upper section resulted in 148 fish captured representing nine species. These species included 61 largescale sucker, 31 rainbow trout, 17 northern pikeminnow, 12 mountain whitefish, eight northern pike, eight brown trout, seven yellow perch, three westslope cutthroat trout, and one smallmouth bass (Table 2-6).

Table 2-6: Summary of 2009, 2010, and 2011 spring electrofishing CPUE (fish per hour) in the Clark Fork River downstream of the confluence of the Thompson River (upper section).

| Chasias            | Upper Sec | tion 2009 | Upper Sec | ction 2010 | Upper Section 2011 |      |
|--------------------|-----------|-----------|-----------|------------|--------------------|------|
| Species            | Number    | CPUE      | Number    | CPUE       | Number             | CPUE |
| BL BH              | 2         | 3.4       | 0         | 0          | 0                  | 0    |
| LL                 | 2         | 3.4       | 5         | 2.4        | 8                  | 4.2  |
| LN SU              | 0         | 0         | 1         | 0.5        | 0                  | 0    |
| LC SU              | 51        | 86.2      | 15        | 7.2        | 61                 | 32.1 |
| LT                 | 1         | 1.7       | 0         | 0          | 0                  | 0    |
| MWF                | 1         | 1.7       | 1         | 0.5        | 12                 | 6.3  |
| NP                 | 6         | 10.1      | 8         | 3.9        | 8                  | 4.2  |
| N PMN              | 6         | 10.1      | 3         | 1.4        | 17                 | 8.9  |
| RB                 | 6         | 10.1      | 26        | 12.6       | 31                 | 16.3 |
| RS SH              | 2         | 3.4       | 0         | 0          | 0                  | 0    |
| SMB                | 2         | 3.4       | 0         | 0          | 1                  | 0.5  |
| WCT                | 0         | 0         | 3         | 1.4        | 3                  | 1.6  |
| YP                 | 0         | 0         | 1         | 0.5        | 7                  | 3.7  |
| SubTotal Salmonids | 10        | 16.9      | 35        | 17.0       | 54                 | 28.4 |
| TOTAL FISH         | 79        | 133.9     | 63        | 30.5       | 148                | 78.4 |

CPUE (fish per hour) also increased from 2010 to 2011 for brown trout, largescale suckers, mountain whitefish, northern pikeminnow, rainbow trout, and yellow perch, as well as for all species combined. The CPUE (fish per hour) for northern pike remained similar to the 2010 rate, but was about half of the 2009 rate (*see* Figure 2-5). The number of salmonids collected, and the CPUE for salmonids, in this section has increased in each of the 3 years of sampling.

**Spring Electrofishing - CFR Below Thompson River** (Upper Section) 90 80 70 **Satch Per Unit Effort** 60 (Fish per hour) 50 40 30 20 10 2009 (n = 79)2010 (n = 66)2011 (n = 148)

Figure 2-5: Summary of catch per unit effort (fish per hour) during electrofishing in the Clark Fork River (CFR) downstream of the confluence with the Thompson River (upper section) in the spring 2009, 2010, and 2011.

#### **2.2.3 Summary**

Species diversity and presence of salmonids appears to be greater in the upper section versus lower section. Collectively between 2009 and 2011, there were 13 species recorded in the upper section versus 10 species observed in the lower section. In 2011, the presence of salmonids in the upper section was also much greater compared to the lower section. There were 54 salmonids (brown trout, mountain whitefish, rainbow trout, and westslope cutthroat trout) in the upper section compared to two salmonids (rainbow trout and westslope cutthroat trout) in the lower section (in 2011). The difference in species composition and abundance of salmonids is likely related to habitat conditions. The upper section is more of a riverine environment compared to the lower section.

## 2.3 Fall Electrofishing

### 2.3.1 Electrofishing Above the Island Complex

In 2011 electrofishing efforts in the Clark Fork River were completed from the confluence with Eddy Creek downstream to the Island Complex (Figure 2-1). Although the fall electrofishing

section (Eddy Creek to the Island Complex) is technically within the boundaries of the Thompson Falls Reservoir, it is characterized as riverine habitat rather than reservoir. The 2011 survey covered the same length of reach survey in 2010. In 2009, electrofishing efforts started at the confluence with Eddy Creek and extended further downstream to the confluence of the Thompson River. Approximately 2 miles of the 5-mile section were eliminated in 2010 due to poor habitat and few captures from the downstream end of the Island Complex to Thompson River in 2009.

In 2011, river left was electrofished the night of October 5 and river right was electrofished the night of October 6. The CPUE (fish per hour) is provided in Table 2-7. Data collected from fish sampled during electrofishing efforts in 2011, including length and weight measurements, are provided in Appendix A. The CPUE (fish per hour) data are displayed by species for 2010 and 2011 in Figure 2-6.

Table 2-7: Fall electrofishing CPUE (fish per hour) in the Clark Fork River Above the Island Complex in 2009, 2010, and 2011.

| 0                     | 200    | 2009 2010 2011 |        | 2010  |        | 11    |
|-----------------------|--------|----------------|--------|-------|--------|-------|
| Species               | Number | CPUE           | Number | CPUE  | Number | CPUE  |
| BULL                  | 0      | 0              | 1      | 0.5   | 0      | 0     |
| LL                    | 5      | 1.8            | 5      | 2.3   | 7      | 3.1   |
| LN DC                 | 0      | 0              | 1      | 0.5   | 0      | 0     |
| LN SU                 | 0      | 0              | 1      | 0.5   | 2      | 0.9   |
| LC SU                 | 338    | 125.1          | 133    | 62    | 150    | 65.9  |
| MWF                   | 196    | 72.8           | 215    | 100.3 | 336    | 149.1 |
| NP                    | 11     | 3.7            | 8      | 3.8   | 11     | 4.9   |
| N PMN                 | 88     | 32.2           | 71     | 33.1  | 70     | 30.9  |
| PEA                   | 1      | 0.4            | 0      | 0     | 0      | 0     |
| RB                    | 44     | 17.1           | 29     | 13.6  | 39     | 16.9  |
| RBxWCT                | 4      | 1.6            | 0      | 0     | 2      | 0.9   |
| RS SH                 | 0      | 0              | 5      | 2.3   | 9      | 4.1   |
| SMB                   | 1      | 0.4            | 4      | 1.9   | 6      | 2.7   |
| WCT                   | 9      | 3.2            | 5      | 2.3   | 6      | 2.6   |
| ΥP                    | 2      | 0.7            | 1      | 0.5   | 1      | 0.5   |
| Subtotal<br>Salmonids | 258    | 96.5           | 255    | 119   | 390    | 172.6 |
| TOTAL FISH            | 699    | 259            | 479    | 223.6 | 639    | 282.5 |

The 2011 electrofishing collected 639 fish representing 11 species and one hybrid, of which four species and the hybrid were salmonids (brown trout, mountain whitefish, rainbow trout, rainbow x westslope cutthroat hybrid, and westslope cutthroat trout). Electrofishing efforts in 2010 and 2009 captured 479 fish representing 12 species and 699 fish representing 10 species and one hybrid, respectively. Since annual fall sampling started in 2009, only one bull trout has been captured. This bull trout was captured along the river left in 2010. In 2009, 2010, and 2011 mountain whitefish and largescale suckers were the predominant species captured followed by

northern pikeminnow and rainbow trout. While the overall CPUE for all species has not shown a trend over the 3 years of sampling, the CPUE for salmonids has been increasing each year, due to increases in mountain whitefish.

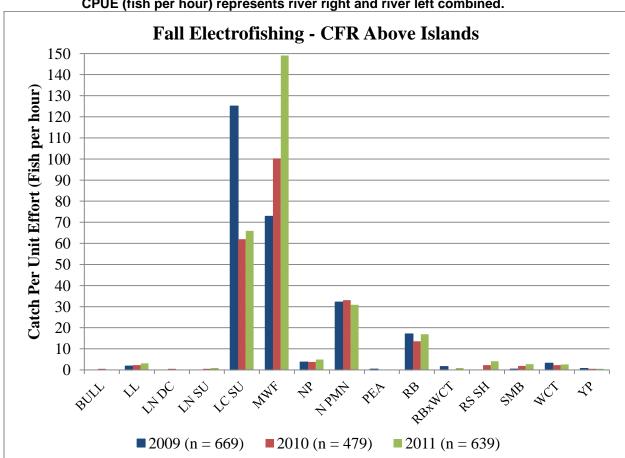



Figure 2-6: Summary of Thompson River fall electrofishing above islands in 2009, 2010, and 2011. CPUE (fish per hour) represents river right and river left combined.

#### 2.3.2 Electrofishing from Paradise to Plains

In 2010, a new electrofishing sampling section between Paradise and Plains was added in order to acquire basic species composition in the Clark Fork River approximately 35 miles upstream of the Thompson Falls Hydroelectric Project. This reach was sampled again in 2011. Electrofishing began at the town of Paradise, approximately 1.5 miles downstream of the Clark Fork/Flathead River confluence, and ended at the USGS gage station #12389000 located near the town of Plains approximately 4 miles downstream (*see* Figure 2-2). The right bank was electrofished the night of October 20, 2011 (Table 2-9) and the left bank was electrofished the night of October 11, 2011 (Table 2-10). Measurements for each fish captured during the 2011 fall electrofishing are provided in Appendix A.

In 2011, a total of 1,088 fish representing 12 species and one hybrid, including four species and one hybrid of salmonids, were captured during the fall sampling effort. The four salmonid

species and hybrid included rainbow trout, westslope cutthroat trout, brown trout, mountain whitefish, and rainbow x westslope cutthroat hybrids (Table 2-9). In 2010, 421 fish (river right and left combined) representing nine species, including the same four species of salmonids were captured (Table 2-9). Peamouth, longnose sucker, northern pike, and rainbow x westslope cutthroat hybrid were observed in 2011 but not in 2010.

Summary of CPUE (fish per hour) during 2010 and 2011 fall electrofishing in the Clark Fork River, including river left and river right, from Paradise to Plains.

| Cuasias            | 201    | 0     | 2011   |       |
|--------------------|--------|-------|--------|-------|
| Species            | Number | CPUE  | Number | CPUE  |
| LL                 | 10     | 5.4   | 21     | 11.6  |
| LN SU              | 0      | 0     | 1      | 0.6   |
| LC SU              | 94     | 51.5  | 306    | 178.8 |
| MWF                | 85     | 47    | 274    | 155.8 |
| NP                 | 0      | 0     | 2      | 1.1   |
| N PMN              | 166    | 90.9  | 251    | 146.3 |
| PEA                | 0      | 0     | 1      | 0.6   |
| RB                 | 43     | 23.3  | 151    | 85.4  |
| RBxWCT             | 0      | 0     | 2      | 1.2   |
| RS SH              | 3      | 1.6   | 42     | 23.2  |
| SMB                | 2      | 1.1   | 7      | 4     |
| WCT                | 17     | 9.4   | 24     | 13.6  |
| YP                 | 1      | 0.6   | 6      | 3.6   |
| Subtotal Salmonids | 155    | 85.1  | 472    | 267.6 |
| TOTAL FISH         | 421    | 230.8 | 1088   | 625.8 |

In 2011, the predominant species captured was largescale sucker (n=306) followed by mountain whitefish (n=274), northern pikeminnow (n=251), and rainbow trout (n=151). The total number of fish collected in 2011, and the CPUE, increased substantially in 2011 in comparison to the previous year.

The CPUE (fish per hour), by species for the fall electrofishing in 2010 and 2011 (right and left bank combined) are displayed in Figure 2-7. CPUE (fish per hour) show a dramatic increase from 2010 to 2011 for largescale suckers, mountain whitefish, northern pikeminnow, rainbow trout, and redside shiner. Increases in CPUE (fish per hour) were also documented in 2011 for brown trout, longnose suckers, northern pike, peamouth, rainbow x westslope cutthroat hybrids, smallmouth bass, westslope cutthroat trout, and yellow perch.

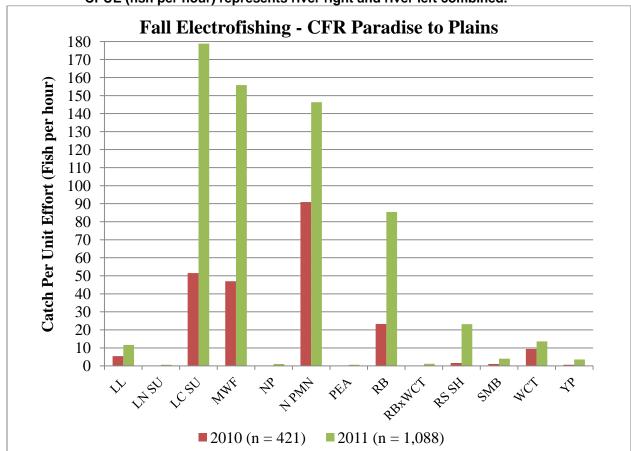



Figure 2-7: Thompson River fall electrofishing between Paradise and Plains in 2010 and 2011. CPUE (fish per hour) represents river right and river left combined.

#### 2.4 Middle Clark Fork River Fisheries Data

FWP provided the following electrofishing summaries of fish captured and observed during fall surveys completed in two sections in the middle Clark Fork River. The Quinn's section was electrofished in 2010 and a summary of the data is provided in Section 2.4.1. The St. Regis section was electrofished in 2011 and a summary of the data is provided in Section 2.4.2.

### 2.4.1 Quinn's Section (2010)

The Quinn's section is 5.6 miles (9.0 km) in length and begins in the middle Clark Fork River approximately 5.6 miles upstream of the confluence with the Flathead River. The section extends downstream to the confluence with the Flathead River. The electrofishing surveys were completed on October 6, 7, and 13, 2010. The following table lists the population estimates for rainbow trout and westslope cutthroat trout.

Table 2-9: Fish population estimates with the 95% confidence interval (CI) for rainbow trout (RB) and westslope cutthroat trout (WCT) captured in the Quinn's section in 2010.

| Species | Fish estimate per section | 95% CI     | Fish estimate per km |
|---------|---------------------------|------------|----------------------|
| RB      | 367                       | (253, 552) | 40                   |
| WCT     | 229                       | (155, 358) | 25                   |

Other species observed and/or recorded during the October 2010 electrofishing survey of the Quinn's section are provided below.

Table 2-10: Summary of other fish species observed or captured, including length and weight, during the fall electrofishing surveys in Quinn's section in 2010.

| Species | Number of fish captured             | Length<br>(mm) | Weight (g) |
|---------|-------------------------------------|----------------|------------|
| LL      | 5                                   | 200-511        | 70-1,235   |
| BULL    | 1                                   | 270            | 165        |
| SMB     | 1                                   | 306            | 460        |
| NP      | 1                                   | 570            | 1,250      |
| RS SH   | Species observed but not quantified |                |            |
| N PMN   | Species observed but not quantified |                |            |
| LC SU   | Species observed but not quantified |                |            |
| MWF     | Species observed but not quantified |                |            |
| LN DC   | Species observed but not quantified |                |            |

## 2.4.2 St. Regis Section (2011)

The St. Regis section is approximately 4.3 miles in length and begins in the middle Clark Fork River approximately 2.7 miles upstream of the confluence with the St. Regis River. The section extends to approximately 1.6 miles downstream from the confluence of the St. Regis River. The electrofishing surveys were completed in fall 2011. The following table lists the population estimates results for rainbow trout, westslope cutthroat trout, and brown trout.

Table 2-11: Fish population estimates with the 95% confidence interval (CI) for rainbow trout (RB) and westslope cutthroat trout (WCT) captured in the Quinn's section in 2010.

| Species | Fish estimate per section | 95% CI       | Fish estimate per km |
|---------|---------------------------|--------------|----------------------|
| RB      | 1,280                     | (1023, 1618) | 186                  |
| WCT     | 398                       | (306, 529)   | 57                   |
| LL      | 202                       | (143, 301)   | 29                   |

Other species observed and/or recorded during the fall 2011 electrofishing survey of the St. Regis section are provided below in Table 2-13.

Table 2-12: Summary of other fish species observed or captured, including length and weight, during the fall electrofishing surveys in the St. Regis section in 2011.

| Species | Number of fish captured             | Length (mm) | Weight (g) |
|---------|-------------------------------------|-------------|------------|
| BULL    | 2                                   | 481 and 200 | 870 and 60 |
| LT      | 1                                   | 452         | 540        |
| RS SH   | Species observed but not quantified |             |            |
| N PMN   | Species observed but not quantified |             |            |
| LC SU   | Species observed but not quantified |             |            |
| MWF     | Species observed but not quantified |             |            |
| LN DC   | Species observed but not quantified |             |            |

## 3.0 Upstream Fish Passage

## 3.1 2011 Upstream Fish Passage Facility Evaluation

FERC issued an Order on June 9, 2011 approving PPL Montana's 10-year *Fish Passage Facility Evaluation Plan Phase 2 Action Plan* (2011-2020) (Fish Passage Evaluation Plan). The upstream fish passage facility became operational in 2011 and PPL Montana implemented the first year of studies outlined in the Fish Passage Evaluation Plan.

## 3.2 Effectiveness of Fish Passage

The following sections summarize the results from the first year of ladder operations. The data were collected to evaluate the effectiveness of the fish ladder. In 2011 fish ladder results provided in this report include the following:

- Total number of days the ladder was in operation
- Clark Fork River hydrology
- Total number of fish and species ascending the ladder
- Total number of fish and species passed to Thompson Falls Reservoir
- Number of fish recaptures at the dam
- Number of fish which fallback after passing the dam
- Most active period(s) for fish and various species ascending the ladder
- Time it took for fish to ascend the ladder
- Results from the weir versus orifice study and attraction flow studies
- Bull trout genetic sampling and tributary assignment

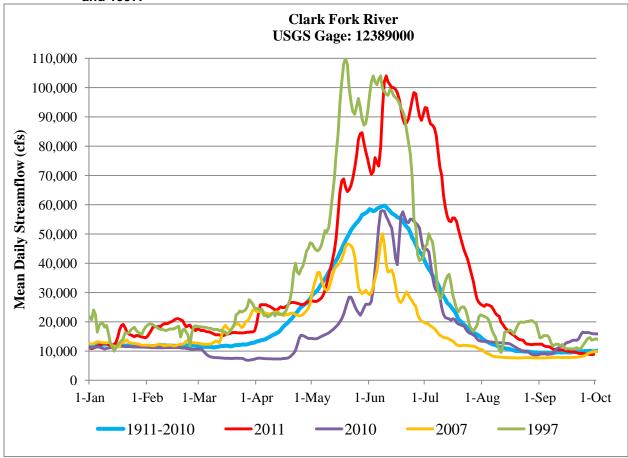
### 3.2.1 2011 Ladder Operations

The Thompson Falls Upstream Fish Passage Facility (hereafter referred to as the fish ladder) was operational for fish passage for the first time following construction on March 17, 2011 and closed for the year (winterized) on October 17, 2011. During the 2011 season, the holding pool at the top of the ladder was typically checked twice a day (morning and afternoon/evening) for fish. The frequency of checks varied slightly from once a day to multiple times a day depending on fish activity and water temperature. Fortunately in 2011, high summer water temperatures were not a problem for adult salmonids as a result of the higher than average snowpack and resulting high streamflows in the summer and fall months.

Below is a table summarizing periods of time the ladder was in operation (Table 3-1). During late May and most of June, July, and August, the ladder was not in operation. High flows and associated debris accumulating in the lower pools of the fish ladder prevented operations in May and June. A combination of river flows and maintenance activities (replacement of stanchions) at

the Main Dam limited ladder operations in July and August. Following repairs of the stanchions, the ladder remained in operation between August 22 and October 17, 2011. On October 17, operations at the ladder ceased and the facility was winterized. During the winter, freezing conditions are a safety concern for ladder operations and for mechanical equipment. In addition, adult spawning migrations occur in the spring and fall in this region. In 2012, the ladder is scheduled to start operations on March 19, weather conditions permitting.

Summary of when the Thompson Falls Upstream Fish Ladder Facility was in operation and the number of days the ladder was checked for fish in 2011.


| Date Open       | Date Closed      | # of Days Ladder<br>In Operation | # of Days Ladder<br>Checked for Fish |
|-----------------|------------------|----------------------------------|--------------------------------------|
| March 17, 2011  | May 24, 2011     | 68                               | 60                                   |
| June 21, 2011   | June 24, 2011    | 4                                | 4                                    |
| July 11, 2011   | July 13, 2011    | 3                                | 3                                    |
| August 22, 2011 | October 17, 2011 | 57                               | 47                                   |
| TOTAL           |                  | 132 days                         | 114 days                             |

#### 3.2.2 2011 Clark Fork River Conditions

On June 9, 2011, PPL Montana recorded the peak streamflow in the lower Clark Fork River at Thompson Falls Hydroelectric Project to be 117,387 cfs. In 2011, the peak streamflow in the lower Clark Fork River exceeded the flood stage set by the National Weather Service (16 feet) and historic spring streamflows measured by USGS (Figure 3-1). Prior to 2011, the peak streamflow in the lower Clark Fork River, as recorded by the USGS gage station near Plains, had only exceeded 100,000 cfs 14 times between 1911 and 2010. Peak flows measured between 1911 and 2010 occurred as early as May 11 and as late as July 2. Historically, the majority of peak streamflows occurred between late May and late June.

Below are several hydrographs representing various river years in the Clark Fork River near Plains (Figure 3-1). The hydrographs in Figure 3-1 represent the mean daily streamflow for period between 1911-2010, 1997 (the most recent high water year), 2007 (a low water year), 2010 (an average water year), and 2011. Figure 3-1 shows that the streamflows in 2011 were much higher than an average year and the peak occurred later in the year compared to a similar high water event in 1997.

Figure 3-1: Hydrograph for the Clark Fork River near Plains, Montana from USGS gage 12389000. Hydrographs represent daily mean streamflows between 1911-2010, 2011, 2010, 2007, and 1997.



During ladder operations, PPL Montana maintained records of the mean daily streamflows at the dam, mean daily water temperature in the ladder, and mean daily air temperature at the ladder (Figure 3-2). Mean daily air temperatures did not exceed 24 °C (75.2 °F) and mean daily water temperatures did not exceed 22 °C (71.6 °F) during ladder operations. More details about when fish ascended the ladder and the corresponding streamflows are discussed in Section 3.2.5.

Continuous recording thermographs were installed in Pool # 5, Pool # 48, and at the top of the fish ladder to record water temperatures at the top and the bottom of the fish ladder, and air temperature during the ladder operating season.

**2011 Streamflow and Temperature** 30 115,000 28 105,000 26 95,000 Streamflow at Thompson Falls Dam (cfs) 24 22 85,000 Temperature (Celsius) 20 75,000 18 65,000 16 14 55,000 12 45,000 10 35,000 8 6 25,000 4 15,000 2 0 5,000 212112 12611 (1311 162311 7/111 1/2711 8/4/11 8/4/11)

Figure 3-2: Summary of the mean daily streamflow (cfs), mean water temperature at the ladder pool 48 (°C), and mean daily air temperature (°C) measured at Thompson Falls Hydroelectric Project between March 17 and October 17, 2011.

#### 3.2.3 Summary of Fish and Species

During ladder operations, approximately 1,805 fish representing 10 species and one hybrid, including two bull trout, ascended the ladder (Table 3-2). FWP authorized the release of all species upstream into the Thompson Falls Reservoir with the exception of lake trout and walleye. The first fish to ascend the ladder was a rainbow trout on March 21 (water temperature 4.3 °C). On April 13, the first bull trout (365 mm and 364 g) was captured in the holding pool having ascended the entire ladder (water temperature 6.7 °C). The second bull trout (547 mm and 1,438 g) was captured ascending the ladder in one of the pools during a change in weir mode on April 26 (water temperature 7.8 °C). The change in weir mode (orifice to v-notch or v-notch to orifice) requires dewatering of the ladder. During the dewatering process, fish remaining in the pools are dipped netted, processed (measured, tagged, etc.) as if having been in the holding pool, and released upstream if an approved species for passage. Both bull trout were released with PIT tags in the Thompson Falls Reservoir. A genetic sample was taken from each bull trout and the results assigned both fish to Region 4 (Fishtrap Creek and Thompson River) as shown in Table 3-10 (*see* Section 3.2.10 for more details).

Mean Daily Temp - Pool 48
 Mean Daily Temp - Air
 Mean Daily Streamflow

Of the 1,805 fish that ascended the ladder, a total of 1,722 fish were released upstream into the Thompson Falls Reservoir. The remaining 83 fish were recorded at the ladder workup station as mortalities. These mortalities included 73 northern pikeminnow, four smallmouth bass, two rainbow trout, one longnose sucker, one lake trout, and one largescale sucker. The majority of the mortalities were associated with a mechanical issue at the ladder, since corrected, that occurred concurrently with the largest movement of fish in late August. Fish movement and their timing of movement up the ladder are discussed in more detail in Section 3.2.5.

Table 3-2: Summary of the number of fish and species observed at the fish ladder and recaptured at the fish ladder.

| Species               | Total Number (# Mortalities) | Recaps |
|-----------------------|------------------------------|--------|
| BULL                  | 2                            | 0      |
| RB                    | 164 (2)                      | 22     |
| RBxWCT                | 9                            | 0      |
| WCT                   | 21                           | 1      |
| LL                    | 28                           | 0      |
| MWF                   | 17                           | 0      |
| LN SU                 | 10 (2)                       | 0      |
| LC SU                 | 418 (1)                      | 4      |
| N PMN                 | 1,000 (73)                   | 1      |
| SMB                   | 135 (4)                      | 2      |
| LT                    | 1 (1)                        | 0      |
| Total                 | 1,805 (83)                   | 30     |
| Total Passed Upstream | 1,722                        |        |

Fish that ascended the ladder and released upstream were measured for total length and weight, as well as marked via fin clip, VIE tag, and/or PIT tag. A summary of length and weight measurements are provided in Table 3-3. The longest fish captured at the ladder was a lake trout, which was not released upstream, measuring 630 mm long and weighing 1,868 g. The heaviest fish captured at the ladder was a rainbow trout measuring 565 mm long and weighing 2,292 g. The smallest fish captured at the ladder was a northern pikeminnow measuring 82 mm long and weighing 2 g. In 2011, there was a total of 386 kilograms of fish biomass released upstream into the Thompson Falls Reservoir. Rainbow trout and northern pikeminnow represented approximately one-third each of the total biomass.

Table 3-3: Summary of the average and range of lengths (mm) and weights (g) for all species measured (n= represents number measured) at the fish ladder in 2011.

| Fish Species | Sample (n) for<br>Length | Avg Length (mm)<br>(range) | Sample (n)<br>for Weight | Avg Weight (g)<br>(range) |
|--------------|--------------------------|----------------------------|--------------------------|---------------------------|
| BULL         | 2                        | 456<br>(265-547)           | 2                        | 901<br>(364-1,438)        |
| RB           | 159                      | 410<br>(195-565)           | 159                      | 728<br>(68-2,292)         |
| RBxWCT       | 9                        | 362<br>(227-477)           | 9                        | 537<br>(136-1,016)        |
| WCT          | 21                       | 371<br>(224-430)           | 21                       | 526<br>(100-763)          |
| LL           | 28                       | 388<br>(171-600)           | 28                       | 655<br>(40-2,068)         |
| MWF          | 17                       | 336<br>(282-417)           | 17                       | 349<br>(186-592)          |
| LN SU        | 10                       | 349<br>(262-452)           | 10                       | 460<br>(216-1,180)        |
| LC SU        | 176                      | 394<br>(128-500)           | 175                      | 641<br>(64-1,134)         |
| N PMN        | 262                      | 337<br>(82-487)            | 259                      | 344<br>(2-1,152)          |
| SMB          | 131                      | 239<br>(138-450)           | 125                      | 177<br>(86-882)           |
| LT           | 1                        | 630                        | 1                        | 1868                      |
| TOTAL        | 816                      |                            | 1,066                    |                           |

#### 3.2.4 Fallback

A total of 225 fish were implanted with PIT tags at the ladder, including 216 individual salmonids (141 rainbow trout, 27 brown trout, 20 westslope cutthroat, 17 mountain whitefish, nine rainbow x westslope cutthroat hybrids, and two bull trout) and 9 individual non-salmonids (six largescale suckers, two northern pikeminnow, and one longnose suckers).

Of the 225 fish that were initially PIT tagged at the ladder, 10 individual fish were recaptured at the ladder at a later date (Table 3-4). One rainbow trout (*see* Fish #9 in Table 3-4), was initially captured and PIT tagged at the ladder on April 2 and was recaptured at the ladder three additional times (April 17, April 19, April 26) after being passed upstream each time. PPL Montana identified nine individual rainbow trout and one westslope cutthroat trout that were classified as "fallbacks" that returned to the ladder. Avista detected three additional fish (two rainbow trout and one westslope cutthroat trout) at their remote monitoring antennas in Graves Creek (between Noxon Dam and Thompson Falls Hydroelectric Project) in 2011 (*see* details in next section and in Table 3-5). The fish Avista detected in Graves Creek had initially been tagged at the Thompson Falls ladder and were "fallbacks" that either moved downstream through the turbines or spillway. The fallbacks that Avista identified never returned to the ladder in 2011. In all, there were a total of 12 individual fish classified as "fallbacks" in 2011 that had initially

been PIT tagged at the fish ladder. This is approximately 5.3 percent of fish captured and PIT tagged at the ladder in 2011.

These fallbacks indicate the fish moved downstream either through the Thompson Falls Hydroelectric Project turbines or over the spillway. The combined flow-thru capacity of the generating units at Thompson Falls Hydroelectric Project is approximately 23,000 cfs. When river inflows exceed this capacity or there is a generating load rejection, spill is initiated at the Main Dam spillway. Therefore, when streamflows are less than 23,000 cfs, it is assumed fish fallback through the turbines. When streamflows are above 23,000 cfs, fish can fallback via turbines or over the spillway. Between August 29 and October 5, streamflows ranged between approximately 9,000 cfs and 12,300 cfs indicating that rainbow trout #7 and #8 in Table 3-4 moved downstream through the turbines. For the remaining fish, it is undetermined as to whether the fish passed via the spillway or through the turbines because streamflows, at times, were greater than 23,000 between the initial capture and recapture dates (Tables 3-4 and 3-5).

Summary of fallback: including initial date captured, fallback through turbines or spillway, recapture date, and the duration between the initial capture date and recapture; observed at the fish ladder. Fish #9 (in red) indicates the same individual fish was recaptured at the ladder three times.

| Fish ID | Species | PIT TAG         | Initial Capture<br>Date | Fallback<br>Turbines or<br>Spillway | Recapture<br>Date | Time Between Capture and Recapture (days) |
|---------|---------|-----------------|-------------------------|-------------------------------------|-------------------|-------------------------------------------|
| 1       | RB      | 985121021888794 | 4/05/2011               | Turbines or<br>Spillway             | 9/13/2011         | 161                                       |
| 2       | RB      | 985121021901768 | 4/10/2011               | Turbines or<br>Spillway             | 4/11/2011         | 1                                         |
| 3       | RB      | 985121021906448 | 4/13/2011               | Turbines or<br>Spillway             | 4/19/2011         | 6                                         |
| 4       | RB      | 985121021893490 | 4/15/2011               | Turbines or<br>Spillway             | 4/19/2011         | 4                                         |
| 5       | RB      | 985121021891206 | 4/17/2011               | Turbines or<br>Spillway             | 4/19/2011         | 2                                         |
| 6       | RB      | 985121021875407 | 4/28/2011               | Turbines or<br>Spillway             | 5/3/2011          | 5                                         |
| 7       | RB      | 985121021922484 | 8/29/2011               | Turbines                            | 10/5/2011         | 37                                        |
| 8       | RB      | 985121021909744 | 9/02/2001               | Turbines                            | 9/27/2011         | 25                                        |
| 9       | RB      | 985121021886151 | 4/02/2011               | Turbines or<br>Spillway             | 4/17/2011         | 15                                        |
| 9       | RB      | 985121021886151 | 4/17/2011               | Turbines or<br>Spillway             | 4/19/2011         | 2                                         |
| 9       | RB      | 985121021886151 | 4/19/2011               | Turbines or<br>Spillway             | 4/26/2011         | 7                                         |
| 10      | WCT     | 985121023470165 | 4/15/2011               | Turbines or<br>Spillway             | 4/19/2011         | 4                                         |

Avista Corp. has PIT tag monitoring equipment installed in Graves Creek, a tributary to Noxon Rapids Reservoir, downstream of Thompson Falls Hydroelectric Project. During Avista's monitoring efforts between April 7 and August 1, 2011, four fish (3 rainbow and 1 westslope cutthroat trout) that were originally PIT tagged by PPL Montana either at the ladder or downstream of the Thompson Falls Hydroelectric Project were detected in Graves Creek (Table 3-5). Two rainbow trout and one westslope cutthroat trout had been initially tagged at the Thompson Falls ladder and either fell back downstream through the turbines or over the spillway. The fourth fish, (rainbow trout) had been PIT tagged while electrofishing downstream of the Thompson Falls Hydroelectric Project and was never collected in the ladder. A summary of the fish, fish morphology, PIT tag identification number, dates of capture by PPL Montana and subsequent detection by Avista is provided in Table 3-5.

Table 3-5: Summary of PPL Montana PIT tagged trout detected downstream in Graves Creek by Avista between April 7 and August 1, 2011. Antenna (Ant) 1-3 located above trap site, 4-6 below trap.

| Fish<br>ID | Species | PIT TAG         | Initial<br>Capture<br>Date | Initial<br>Capture<br>Location/<br>Method | Fallback<br>Turbines or<br>Spillway | Detected<br>by Avista<br>Date | Detection<br>Location/Method | Detected<br>by Avista<br>Date             | Detection<br>Location/Method                     |
|------------|---------|-----------------|----------------------------|-------------------------------------------|-------------------------------------|-------------------------------|------------------------------|-------------------------------------------|--------------------------------------------------|
| 1          | RB      | 985121021869801 | 4/13/11                    | TFalls<br>Ladder                          | Turbines or<br>Spillway             | 5/11/11<br>4:43:47            | Graves Creek<br>Ant 6        | 5/11/11<br>7:47:54                        | Graves Creek<br>Antenna 2                        |
| 2          | WCT     | 985121021897571 | 5/11/11                    | TFalls<br>Ladder                          | Turbines or<br>Spillway             | 6/10/11<br>9:18:28            | Graves Creek, Ant            | 6/19/11<br>16:17:30                       | Graves Creek,<br>Ant 4                           |
| 3          | RB      | 985121023472595 | 4/04/11                    | TFalls<br>Ladder                          | Turbines or<br>Spillway             | 5/06/11<br>7:18:37            | Graves Creek, Ant<br>6       | 5/11/11<br>8:15:39<br>5/11/11<br>12:55:38 | Graves Creek,<br>Ant 4<br>Graves Creek,<br>Ant 1 |
| 4          | RB      | 985121023472992 | 3/28/11                    | Below<br>TFalls<br>Dam<br>(EFish)         | Not<br>Applicable                   | 5/06/11<br>13:10:49           | Graves Creek<br>Ant 6        | 5/10/11<br>2:31:52                        | Graves Creek<br>Ant 3                            |

#### 3.2.5 Movement from Tailrace to the Ladder

PPL Montana electrofished downstream of the Thompson Falls Hydroelectric Project in March, May, June, and September of 2011, collecting 1,109 fish representing 15 species and one hybrid (Table 3-6). Approximately 206 of the 1,109 fish collected during these electrofishing efforts were PIT tagged, including three bull trout (Table 3-6). The PIT tagged fish represented seven species and one hybrid, including bull trout, largescale sucker, brown trout, lake whitefish, mountain whitefish, rainbow trout, rainbow x westslope cutthroat hybrid, and westslope cutthroat trout.

Table 3-6: Summary of fish species captured and PIT tagged during 2011 electrofishing efforts in March, May, June, and September 2011 downstream of the Thompson Falls Hydroelectric Project.

| Species | Number<br>Captured | Number PIT<br>Tagged |
|---------|--------------------|----------------------|
| BULL    | 3                  | 3                    |
| LC SU   | 310                | 78                   |
| LL      | 17                 | 9                    |
| LN SU   | 155                | 0                    |
| LWF     | 211                | 1                    |
| MWF     | 124                | 22                   |
| N PMN   | 11                 | 0                    |
| NP      | 7                  | 0                    |
| PEA     | 124                | 0                    |
| PUMP    | 1                  | 0                    |
| RB      | 98                 | 84                   |
| RBxWCT  | 2                  | 1                    |
| SMB     | 35                 | 0                    |
| WCT     | 9                  | 8                    |
| WE      | 1                  | 0                    |
| YP      | 1                  | 0                    |
| TOTAL   | 1,109              | 206                  |

Of the 206 fish PIT tagged below the Thompson Falls Hydroelectric Project, seven individual fish (all rainbow trout) were recaptured at the ladder (Table 3-7). The length of time between the initial capture via electrofishing and the recapture at the ladder varied between 13 and 120 days. All seven fish were released upstream.

Of the 1,109 fish captured during electrofishing efforts downstream of the Thompson Falls Dam, a total of 34 fish (31 largescale suckers, two longnose suckers, and one northern pikeminnow) were tagged with a vertical orange VIE tag. One largescale sucker that received a VIE tag when first captured via electrofishing downstream of Thompson Falls Hydroelectric Project was recaptured in the ladder in 2011 (Mabbott, 2011 personal communication). However, details about the timing of the recapture event are unavailable. Additionally, there were 128 fish (50

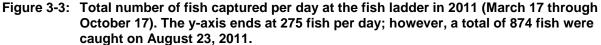
largescale suckers, 64 northern pikeminnow, 13 smallmouth bass, and one brown trout) initially captured at the ladder that also received a vertical orange VIE tag. None of these fish was recaptured at the ladder in 2011.

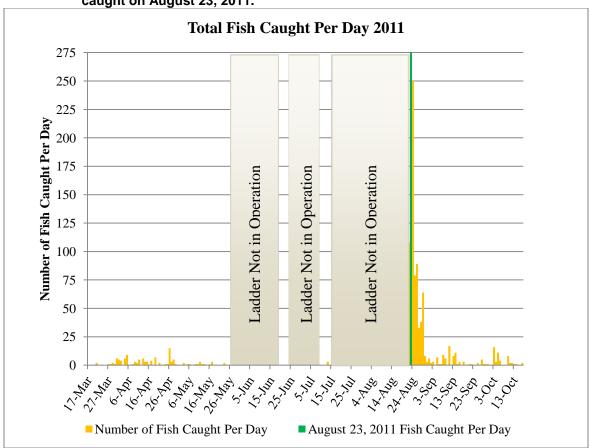
Summary of the fish initially PIT tagged below the Thompson Falls Hydroelectric **Table 3-7:** Project in 2011 and recaptured at the ladder in 2011.

| Fish<br>ID | Species | PIT TAG         | Initial Capture Date<br>Electrofishing | Recapture Date At<br>Ladder | Days<br>Between<br>Capture and<br>Recapture |
|------------|---------|-----------------|----------------------------------------|-----------------------------|---------------------------------------------|
| 1          | RB      | 985121023459641 | 3/18/2011                              | 4/13/2011                   | 26                                          |
| 2          | RB      | 985121021900650 | 3/18/2011                              | 4/04/2011                   | 17                                          |
| 3          | RB      | 985121021899660 | 3/18/2011                              | 3/31/2011                   | 13                                          |
| 4          | RB      | 985121021893349 | 3/18/2011                              | 5/05/2011                   | 48                                          |
| 5          | RB      | 985121021893507 | 5/31/2011                              | 9/14/2011                   | 106                                         |
| 6          | RB      | 985121021911768 | 6/07/2011                              | 10/05/2011                  | 120                                         |
| 7          | RB      | 985121023457912 | 6/22/2011                              | 8/24/2011                   | 63                                          |

## 3.2.6 Length of Time to Ascend the Ladder

Three remote antennas (non-directional) were installed in the lower (pools 7 and 8) and upper (pool 45) pools of the ladder for detecting the presence of PIT tagged fish. PIT tag fish records from the remote antennas were used to calculate the length of time it took an individual fish to ascend the ladder between pools 7/8 and pool 45 (Table 3-8). Some of the fish that entered the ladder had been initially PIT tagged via electrofishing downstream of Thompson Falls Hydroelectric Project while others had been PIT tagged initially at the ladder, gone downstream through the turbines or spillway, and were returning once again to ascend the ladder.


Table 3-8: Time (hours) for fish to ascend the ladder in 2011.


| Species |        | Number of within Ti |         | Range of time to ascend |   |        |                             |
|---------|--------|---------------------|---------|-------------------------|---|--------|-----------------------------|
|         | 0-1 hr | 1-2 hrs             | 2-3 hrs | s 3-4 hrs 4-5 hrs       |   | 5+ hrs | laudei                      |
| RB      | 2      | 4                   | 1       | 2                       | 2 | 4      | 51 min to 19 hrs 39 min     |
| LC SU   |        |                     |         | 1                       |   |        | 3 hrs 37 min                |
| LL      |        |                     |         |                         |   | 1      | 10 hrs 46 min               |
| Total   | 2      | 4                   | 1       | 3                       | 2 | 5      | average time<br>5 hrs 1 min |

Information for 17 fish representing three species ascending the ladder is summarized in Table 3-8. Some fish ascended the ladder more than once due to fallback or escaping the holding pool. The time it took one fish to ascend the ladder varied between 51 minutes to 19 hours and 39 minutes. On average it took approximately 5 hours for a fish to ascend the ladder. On August 22, the ladder was opened at 15:00 and checked at 19:00 with a total of 108 fish (largescale suckers and northern pikeminnow) in the holding pool. These fish did not have PIT tags, but based on the operations of the ladder, it is clear that the fish ascended the ladder within a 4-hour period.

## 3.2.7 Timing of Fish Ascending the Ladder

The ladder was designed to collect fish up to a spill discharge of approximately 25,000 cfs, which equates to a project discharge (streamflow) of 48,000 cfs at full powerhouse capacity. During operations in 2011, the ladder was operating when streamflows increased to 76,037 cfs in May and between 91,900 and 103,632 cfs in June. The ladder was operating when streamflows exceeded the 48,000 cfs design limit, which occurred between May 15 and May 24, between June 21 and June 24, and between July 11 and 13. During these periods, a total of nine fish (three rainbow trout, three longnose suckers, and three northern pikeminnow) ascended the ladder (6 fish in May, 0 fish in June, and 3 fish in July). Plant operators were able to manipulate spill at the Main Dam to enhance fish attraction to the ladder. Based on the results from 2011, PPL Montana believes that the ladder operations reached its operating threshold when streamflows were between approximately 76,000 to 80,000 cfs.





The total number of fish that ascended the ladder per day is summarized in Figure 3-3. On most days there were less than 20 fish in the holding pool at the top of the ladder. When the ladder reopened on August 22, after 40 days of closure there was a "wall" of fish waiting to ascend. The

total number of fish captured per day and by species is outlined in Table 3-9 for the month of August.

Table 3-9: The total number of fish captured and by species at the ladder each day in August.

| August<br>2011 | Total<br>Number<br>of Fish<br>at<br>Ladder | RB | RB x<br>WCT | WCT | LL | N PMN | LC SU | LN SU | SMB |
|----------------|--------------------------------------------|----|-------------|-----|----|-------|-------|-------|-----|
| 22-Aug         | 108                                        | -  | -           | -   | -  | 53    | 55    | -     | -   |
| 23-Aug         | 874                                        | 1  | -           | -   | 1  | 566   | 287   | -     | 19  |
| 24-Aug         | 250                                        | 2  |             | -   | 2  | 191   | 22    | -     | 33  |
| 25-Aug         | 79                                         | 2  | 1           | 1   | 1  | 32    | 22    | 2     | 19  |
| 26-Aug         | 89                                         | 1  | 1           | -   | -  | 49    | 11    | 3     | 24  |
| 27-Aug         | 33                                         | ı  | ı           | -   | 1  | 28    | ı     | 1     | 5   |
| 28-Aug         | 38                                         | 3  | 1           | -   | -  | 16    | 2     | 1     | 16  |
| 29-Aug         | 64                                         | 2  | •           | -   | -  | 51    | -     | 3     | 8   |
| 30-Aug         | 8                                          | 2  | -           | -   | 1  | 4     | 1     | -     | 1   |
| 31-Aug         | 3                                          | 3  |             | -   | -  | -     | 1     |       |     |
| Total          | 1,546                                      | 16 | 1           | 1   | 5  | 990   | 399   | 9     | 125 |

The following two figures show the number of salmonids (Figure 3-4) and non-salmonids (Figure 3-5) captured at the ladder per day in 2011. Salmonids include rainbow trout, rainbow x westslope cutthroat hybrid, westslope cutthroat trout, bull trout, and mountain whitefish. Nonsalmonids include northern pikeminnow, largescale and longnose suckers, and smallmouth bass.

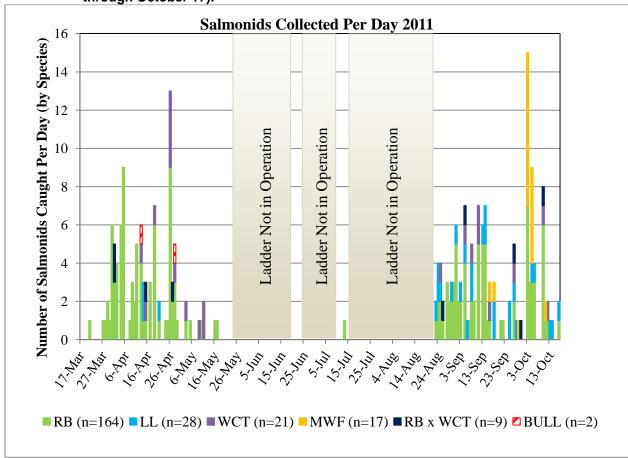
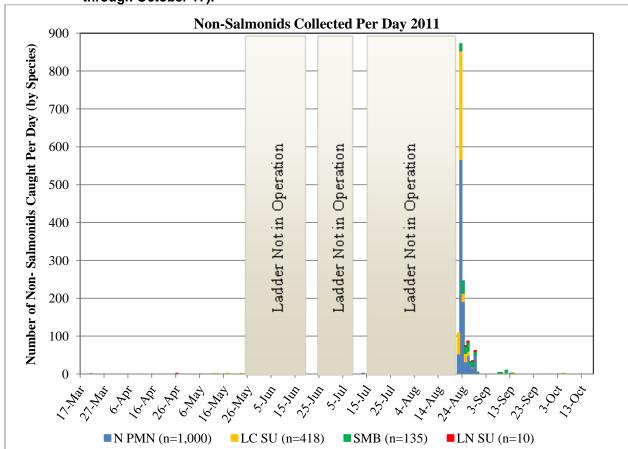
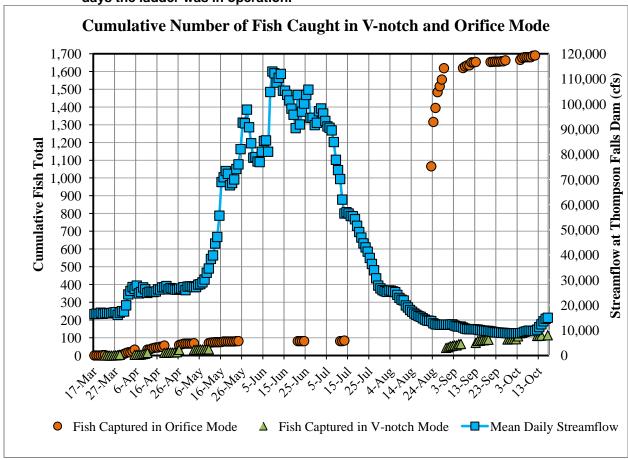



Figure 3-4: Total number of salmonids captured per day at the fish ladder in 2011 (March 17 through October 17).

Rainbow, rainbow x westslope cutthroat hybrid, and westslope cutthroat trout were captured at the ladder during spring, later summer, and fall operations. Bull trout were only observed at the ladder in the spring (April). Brown trout were most common in the late summer and fall. Mountain whitefish were only observed in September and October.

The predominant species (and non-salmonid) captured at the ladder was the northern pikeminnow. Other non-salmonids captured at the ladder included largescale and longnose suckers and smallmouth bass. Approximately 97 percent of the non-salmonids (1,523 of 1,563 total non-salmonids) ascended the ladder in August (Figure 3-5). The total number of fish captured in August (1,546 salmonids and non-salmonids, *see* Table 3-9) represents approximately 86 percent of all fish recorded at the ladder in 2011. Streamflows during this period ranged between 12,300 and 13,800 cfs.





Figure 3-5: Total number of non-salmonids captured per day at the fish ladder in 2011 (March 17 through October 17).

#### 3.2.8 Weir Modes: V-notch vs. Orifice

In 2011, operators alternated the weir setting in the ladder between v-notch and orifice modes on a weekly basis. The cumulative number of fish captured at the ladder in v-notch and orifice modes, as well as the mean daily streamflow in the Clark Fork River is shown in Figure 3-6. The percentages of each species that ascended the ladder in orifice and v-notch modes are presented in Figure 3-7.

Approximately 94 percent of all fish captured at the ladder ascended the ladder during orifice mode. Coincidently, the ladder was in orifice mode between August 22 and 29 when approximately 85 percent (1,535) of all fish captured in 2011 ascended the ladder.

Figure 3-6: Cumulative number of fish captured at the fish ladder in v-notch and orifice mode in 2011. Mean daily streamflow in the Clark Fork River at Thompson Falls Hydroelectric Project is also provided. Cumulative fish totals provided for each weir mode represent days the ladder was in operation.



Based on the results shown in Figure 3-7, it appears that between 22 and 65 percent of the target salmonids (excludes lake trout) ascended the ladder when it was in v-notch mode and between 35 and 78 percent ascended the ladder when it was in orifice mode, depending on species. These data show no clear preference of weir modes for salmonids. When evaluating non-salmonids, there appears to be a more distinct preference for orifice mode. However, these data may be biased because the majority of the non-salmonids ascended the ladder in the first week it was opened in August (see Figure 3-6) when the ladder happened to be in orifice mode. The results may not show a preference for orifice mode, but rather a coincidence that the major migratory movement happened when the ladder was in orifice mode.

Therefore, the preference of v-notch versus orifice remains unclear until additional years of data can be collected and evaluated.

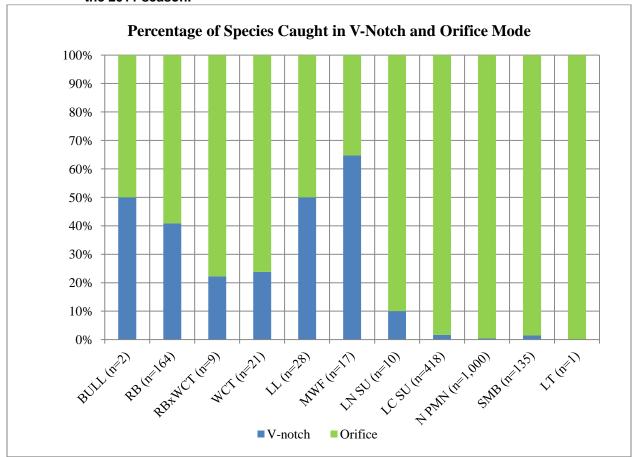
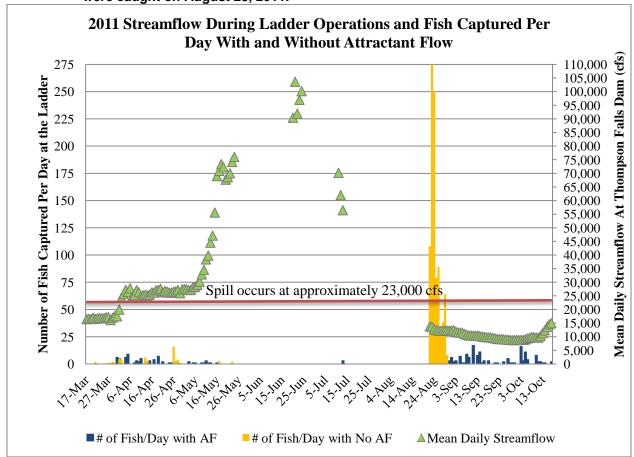



Figure 3-7: Percentage of species caught in the ladder during v-notch versus orifice mode during the 2011 season.

### 3.2.9 Attractant Flow

The auxiliary water system (AWS) routes attraction water from the forebay to augment the ladder pool-to-pool flow up to 6 cfs and provides the majority of total attraction flow at the ladder entrance and into the tailrace to attract fish. The AWS system can add up to 54 cfs of additional water to the ladder to attract fish into the ladder entrance, so that total discharge from Pool #1 of the ladder is 60 cfs. In 2011, the AWS system generally resulted in total flow from the ladder of approximately 50 cfs.

Additionally, another 20 cfs can be discharged directly into the tailrace in the form of a highvelocity jet (also referred to as the HVJ or attractant flow). Its purpose is to improve fish attraction to the ladder, as needed. The HVJ is designed to discharge 20 cfs through control valve CV-1. The jet discharges through a 14-inch diameter orifice, which produces a discharge jet velocity of approximately 19 feet per second into the tailrace. The HVJ is designed to operate during spill (occurs when streamflow exceeds 23,000 cfs. See Figure 3-8), but can also be operated during non-spill periods. Other attraction alternatives during non-spill include partially opening an adjacent spillway lift gate near to the ladder entrance. During 2011, the HVJ was


alternately turned on and off to test the efficacy of this water source as an attraction to migrating adult fish.

Data collected from the spring of 2011 (April 2 through July 14) show 59 fish were captured at the ladder when the attractant flow was present versus 42 fish captured at the ladder when the attractant flow was not present (Figure 3-8). The daily number of fish captured at the ladder varied between one and nine fish per day when the attractant flow was present versus one to 16 fish per day when the attractant flow was not present. When evaluating responses to the attractant flow by species, the majority of salmonids (with the exception of bull trout) ascended the ladder when attractant flow was in use (Figure 3-10).

A scenario we were unable to evaluate this year is that fish may be navigating the tailrace and finding the ladder entrance when the attraction flow is being released. They may then ascend the ladder after the attraction flow is turned off. Thus there may be a delayed effect that is not captured in the data.

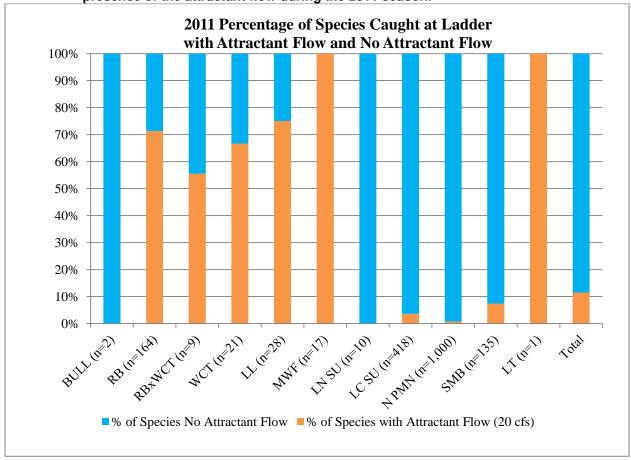

For example, the first bull trout captured in the ladder holding pool was collected on April 13. While there was no attraction flow in use on that date, there had been attractant flow released from April 3 to 11, only a few days prior to the bull trout being captured at the ladder. A second bull trout was captured at the ladder on April 26, another date when the attraction flow was not in use. However, attractant flow (20 cfs) was present between April 15 and April 25. Because there are no data available regarding the movement of the two bull trout through the tailrace to the ladder, it remains unclear as to whether the attractant flow enhanced the bull trout's ability to locate the ladder entrance. Therefore, no definitive conclusions about the efficacy of the attraction flow provided by the HVJ can be made at this time.

Figure 3-8: Mean daily streamflows at Thompson Falls Hydroelectric Project when the ladder was in operation and the number of fish captured per day at the ladder with and without attractant flow (AF). The y-axis ends at 275 fish per day; however, a total of 874 fish were caught on August 23, 2011.



In 2011, approximately 97 percent of fish that climbed the ladder in August ascended when no attractant flow was present (Figure 3-8). Additionally, the majority of these fish were nonsalmonids. Initial data collected in 2011 indicate that in general salmonids may respond to the attractant flow more than non-salmonids (Figures 3-9 and 3-10). However, additional years of data are needed before any conclusions can be made as to how fish respond to the attractant flow.

Figure 3-9: Percentage of each species and hybrid captured in the ladder with and without the presence of the attractant flow during the 2011 season.



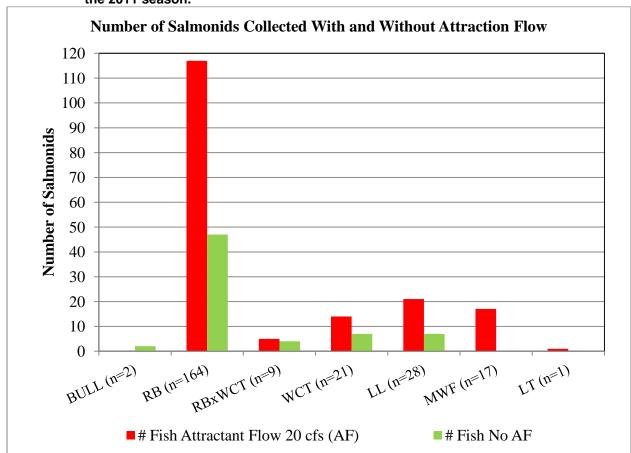



Figure 3-10: Number of salmonids caught in the ladder with and without the attractant flow during the 2011 season.

#### 3.2.10 Bull Trout Genetics

In 2011, a total of five bull trout were collected in association to the Thompson Falls Project. Two of the bull trout were captured in the fish ladder in April and released in the Thompson Falls Reservoir. The other three bull trout were collected via electrofishing downstream of the Thompson Falls Hydroelectric Project on May 31, 2011 and released in the same location. Genetic samples were taken from each of the five bull trout and the results are provided in Table 3-10. All five bull trout have been genetically assigned to Region 4.

Table 3-10: Summary of bull trout genetics from bull trout captured at the Thompson Falls fish ladder and captured via electrofishing downstream of Thompson Falls Hydroelectric Project in 2011. Genetic samples were analyzed at Abernathy in 2011. Results were provided by Avista Corporation (2012).

| Date<br>Captured | Length<br>(mm) | Weight<br>(g) | PIT#            | Method &<br>Location  | Most Likely<br>Population of<br>Origin | Second Most Likely<br>Population of Origin | Confidence |
|------------------|----------------|---------------|-----------------|-----------------------|----------------------------------------|--------------------------------------------|------------|
| 4/26/2011        | 547            | 1438          | 985121023464730 | TFalls Ladder         | Fishtrap Creek<br>(R4)                 | Monture Creek (R4)                         | 500,000    |
| 4/13/2011        | 365            | 364           | 985121023302169 | Tfalls Ladder         | Thompson River (R4)                    | Upper Rock Creek<br>(R4)                   | 1,770      |
| 5/31/2011        | 482            | 966           | 985121021877906 | Efish Below<br>Tfalls | Meadow Creek<br>(R4)*                  | Fish Creek (R4)                            | 1.34133    |
| 5/31/2011        | 180            | 50            | 985121021907887 | Efish Below<br>Tfalls | Fishtrap Creek<br>(R4)                 | Upper Rock Creek<br>(R4)                   | 11,040,300 |
| 5/31/2011        | 247            | 130           | 985121021914545 | Efish Below<br>Tfalls | Fishtrap Creek<br>(R4)                 | Cooper Gulch (R3)                          | 10,424,600 |

\*Note: Meadow Creek is a tributary to the Bitterroot River

# 4.0 Bull Trout Passage from Downstream Facilities

Avista Corporation (Avista) continued their trap and haul upstream fish passage program in 2011. Bull trout captured downstream of Cabinet Gorge Hydroelectric Project were genetically tested using rapid response genetic identification methodology (DeHaan et al. 2010). The rapid response genetic testing provides population assignment within 24 hours after receipt of fish tissue samples. The analysis estimates the natal stream of each bull trout. Bull trout are then either transported to their estimated region of origin, or released downstream of Cabinet Gorge Dam. Bull trout with a natal stream upstream of Thompson Falls Hydroelectric Project are referred to as "Region 4" fish.

Avista captured a total of 64 unique bull trout below Cabinet Gorge Hydroelectric Project (in 2011). In 2011 Avista transported 52 bull trout from downstream of Cabinet Gorge Hydroelectric Project to Cabinet Gorge Reservoir (n = 14), Noxon Rapids Reservoir (n = 33), or upstream of Thompson Falls Hydroelectric Project (n = 5). The five bull trout transported upstream of Thompson Falls Hydroelectric Project were PIT tagged but not radio tagged. One of the five bull trout was released in the South Fork of the Jocko River, while the other four bull trout were released in the Thompson River drainage.

Of the 64 unique bull trout captured below Cabinet Gorge Hydroelectric Project in 2011, 18 were genetically assigned to natal streams located in Region 4 (i.e. upstream of Thompson Falls Dam). Eleven of the 18 bull trout were released in Noxon Reservoir (Region 3) upstream of Vermilion Bay; with eight bull trout implanted with radio transmitters (and PIT tags) and three bull trout released with PIT tags and no radio transmitters. Although the 11 bull trout were genetically assigned to Region 4, these fish were released in Region 3 to monitor and evaluate movement to the Thompson Falls fish ladder. As previously mentioned, five bull trout were released upstream of Thompson Falls into Region 4. The remaining two bull trout captured below Cabinet Gorge Hydroelectric Project and genetically assigned to Region 4 had been previously captured as juveniles in Region 2 and 3 tributary streams. One bull trout had been initially captured in a trap in Graves Creek in 2007 and thus, was transported upstream and released in Grave Creek. The other bull trout was initially captured via electrofishing in East Fork Bull River in 2008 and thus was transported and released in the Bull River just downstream of the confluence with the East Fork Bull River.

Below is a table summarizing the 18 bull trout captured by Avista below Cabinet Gorge Hydroelectric Project in 2011, assigned to Region 4, and transported to either Regions 2, 3, or 4 (Table 4-1). A comprehensive summary of Avista's Upstream Fish Passage Program from 2001 to present is available in Moran (2012) and Bernal and Duffy (2012).

Table 4-1: Summary of the 18 bull trout captured below Cabinet Gorge Dam in 2011, assigned to Region 4, and released in either Regions 2, 3 or 4. (Source: Avista 2011).

| Capture<br>Date | Capture<br>Method         | PIT Tag Number  | Length<br>(mm) | Weight<br>(g) | Release Site                                             | Release<br>Date &<br>Time | Most<br>Likely Pop.<br>Of Origin | Second<br>Most Likely<br>Pop. Of<br>Origin | Confidence | Radio<br>Frequency<br>& Code |  |
|-----------------|---------------------------|-----------------|----------------|---------------|----------------------------------------------------------|---------------------------|----------------------------------|--------------------------------------------|------------|------------------------------|--|
| 4/19/2011       | LCFR-ID<br>Night<br>EFish | 985121021183536 | 586            | 2126          | Released<br>upstream from<br>Vermilion Bay<br>(Region 3) | 4/22/2011;<br>13:15       | Meadow<br>Creek                  | Fishtrap<br>Creek                          | 3.98       | 148.480<br>Code 26           |  |
| 4/24/2011       | LCFR-ID<br>Night<br>EFish | 985121021159735 | 627            | 2835          | Released<br>upstream from<br>Vermilion Bay<br>(Region 3) | 4/27/2011;<br>13:50       | South Fork<br>Jocko River        | North Fork<br>Jocko River                  | 300,000    | 148.480<br>Code 29           |  |
| 5/17/2011       | LCFR-ID<br>Night<br>EFish | 985121021199621 | 530            | 1360          | Released<br>upstream from<br>Vermilion Bay<br>(Region 3) | 5/25/2011;<br>12:52       | Thompson<br>River                | Upper Rock<br>Creek                        | 48,193,900 | 148.500<br>Code 37           |  |
| 5/22/2011       | LCFR-ID<br>Night<br>EFish | 985121021152977 | 710            | 3856          | Released<br>upstream from<br>Vermilion Bay<br>(Region 3) | 5/20/2011;<br>14:07       | Fishtrap<br>Creek                | East Fork<br>Bull River                    | 5.54       | 148.500<br>Code 35           |  |
| 6/2/2011        | LCFR-ID<br>Night<br>EFish | 985121021203256 | 500            | 1049          | Released<br>upstream from<br>Vermilion Bay<br>(Region 3) | 6/8/2011;<br>12:19        | Fishtrap<br>Creek                | Upper Rock<br>Creek                        | 200,000    | 148.480<br>Code 38           |  |
| 6/5/2011        | LCFR-ID<br>Night<br>EFish | 985121001919071 | 585            | 1814          | Released<br>upstream from<br>Vermilion Bay<br>(Region 3) | 6/8/2011;<br>12:21        | Fishtrap<br>Creek                | East Fork<br>Bull River                    | 1,000,000  | 148.480<br>Code 36           |  |
| 6/19/2011       | LCFR-ID<br>Night<br>EFish | 985121021146823 | 570            | 1729          | Released<br>upstream from<br>Vermilion Bay<br>(Region 3) | 6/23/2011;<br>8:23        | Fishtrap<br>Creek                | Upper Rock<br>Creek                        | 14,000     | 148.480<br>Code 39           |  |
| 6/21/2011       | LCFR-ID<br>Night<br>EFish | 985121021183908 | 701            | 3685          | Released<br>upstream from<br>Vermilion Bay<br>(Region 3) | 6/24/2011;<br>13:30       | Fishtrap<br>Creek                | Upper Rock<br>Creek                        | 3,390      | 148.480<br>Code 40           |  |
| 6/21/2011       | LCFR-ID<br>Night<br>EFish | 985121021184737 | 462            | 907           | Released<br>upstream from<br>Vermilion Bay<br>(Region 3) | 6/24/2011;<br>13:30       | Fishtrap<br>Creek                | Cedar<br>Creek                             | 2.44       | None                         |  |

| Capture<br>Date | Capture<br>Method         | PIT Tag Number  | Length<br>(mm) | Weight<br>(g) | Release Site                                                           | Release<br>Date &<br>Time | Most<br>Likely Pop.<br>Of Origin | Second<br>Most Likely<br>Pop. Of<br>Origin | Confidence | Radio<br>Frequency<br>& Code |
|-----------------|---------------------------|-----------------|----------------|---------------|------------------------------------------------------------------------|---------------------------|----------------------------------|--------------------------------------------|------------|------------------------------|
| 6/26/2011       | LCFR-ID<br>Night<br>EFish | 985121021186461 | 470            | 907.3         | Released<br>upstream from<br>Vermilion Bay<br>(Region 3)               | 6/29/2011;<br>12:48       | Fishtrap<br>Creek                | East Fork<br>Bull River                    | 4,250      | None                         |
| 7/3/2011        | LCFR-ID<br>Night<br>EFish | 985120015892614 | 513            | 1191          | Bull River old<br>bridge site<br>downstream of<br>EFBR (Region 2)      | 7/5/2011                  | Upper Rock<br>Creek              | East Fork<br>Bull river                    | 1.09       | None                         |
| 7/5/2011        | LCFR-ID<br>Night<br>EFish | 985121021157243 | 669            | 1948          | Released<br>upstream from<br>Vermilion Bay<br>(Region 3)               | 7/8/2011                  | Fishtrap<br>Creek                | Prospect<br>Creek                          | 2.89       | None                         |
| 7/24/2011       | LCFR-ID<br>Night<br>EFish | 985120029222140 | 496            | 1190          | Graves Creek<br>just upstream of<br>USFS bridge<br>(Region 3)          | 7/25/2011;<br>13:51       | Rattlesnake<br>Creek             | North Fork<br>Jocko River                  | 9.96       | None                         |
| 7/28/2011       | LCFR-ID<br>Night<br>EFish | 985121021156804 | 516            | 1021          | One mile up<br>Thompson River<br>(Region 4)                            | 8/3/2011;<br>13:35        | Fishtrap<br>Creek                | Thompson<br>River                          | 55.196     | None                         |
| 8/30/2011       | LCFR-ID<br>Night<br>EFish | 985121025905128 | 650            | 2892          | Fishtrap Creek,<br>just up from<br>mouth (Region 4)                    | 9/2/2011;<br>14:53        | Fishtrap<br>Creek                | Vermilion<br>River                         | 2.51       | None                         |
| 9/21/2011       | Twin<br>Creek<br>Weir     | 985121001907073 | 613            | 2268          | Just upstream of<br>the mouth of<br>Thompson River<br>(Region 4)       | 9/22/2011;<br>16:14       | Fishtrap<br>Creek                | Grouse<br>Creek                            | 1,050      | None                         |
| 9/22/2011       | Twin<br>Creek<br>Weir     | 985121025914593 | 592            | 1701          | Just upstream of<br>the mouth of<br>Thompson River<br>(Region 4)       | 9/26/2011;<br>14:00       | Fishtrap<br>Creek                | Rock Creek                                 | 10,000     | None                         |
| 9/22/2011       | LCFR-ID<br>Ladder         | 985121025758989 | 606            | 1871          | South Fork Jocko<br>River, upstream<br>of last diversion<br>(Region 4) | 9/26/2011;<br>16:50       | South Fork<br>Jocko River        | Graves<br>Creek                            | 1.38       | None                         |

## 4.1 Monitoring Movement of Radio Tagged Bull Trout

The following sections summarize the periods of detection and movement patterns of the 10 bull trout captured below Cabinet Gorge Hydroelectric Project and released in Regions 3 or 4 with radio transmitters (and PIT tags). Two of the 10 bull trout were initially captured in 2010 (bull trout 30 and 32); while the other eight bull trout were captured and tagged in 2011 (bull trout 26, 29, 35, 36, 37, 38, 39, and 40 as described in Table 4-1). More information on the two bull trout initially tagged in 2010 is available in last year's annual report (*see Sections 4.2.3 and 4.2.5 on Bull trout 30 and 32 in the 2010 Annual Report*).

Telemetry monitoring was completed by Avista and FWP. A brief summary of each bull trout, including date of initial capture, release location, last date of detection, last location of detection, information on whether the fish passed downstream through one of the hydroelectric facilities (i.e. Thompson Falls, Noxon Rapids, or Cabinet Gorge), and whether the bull trout was detected in the tailrace or Thompson Falls Project area, is provided in Table 4-2. More detailed monitoring records are provided in Appendix B. The monitoring data in Appendix B also include detections for bull trout 52, 100, and 169 that were genetically assigned to Region 3. For additional information on the movements of these three bull trout, refer to Bernall and Duffy (2012).

## 4.1.1 Radio Tagged Bull Trout Approaching Thompson Falls Dam

In 2011, eight bull trout genetically assigned to Region 4 were implanted with radio transmitters (and PIT tags) to monitor movement and released in Region 3 (Vermilion Bay). Because these bull trout are genetically assigned to Region 4, it is assumed that with the release location in Region 3 (Vermilion Bay), the fish will likely migrate upstream towards Thompson Falls Dam in an attempt to reach its natal stream. If upstream migration occurs, the goal is to monitor their movement in the Thompson Falls tailrace and near the fish ladder. In 2011, three of the bull trout (codes 26, 38, and 40) were detected immediately downstream of Thompson Falls Dam. The detection of each bull trout (26, 38, 40) is shown in Figure 4-1, 4-2, and 4-3, respectively.

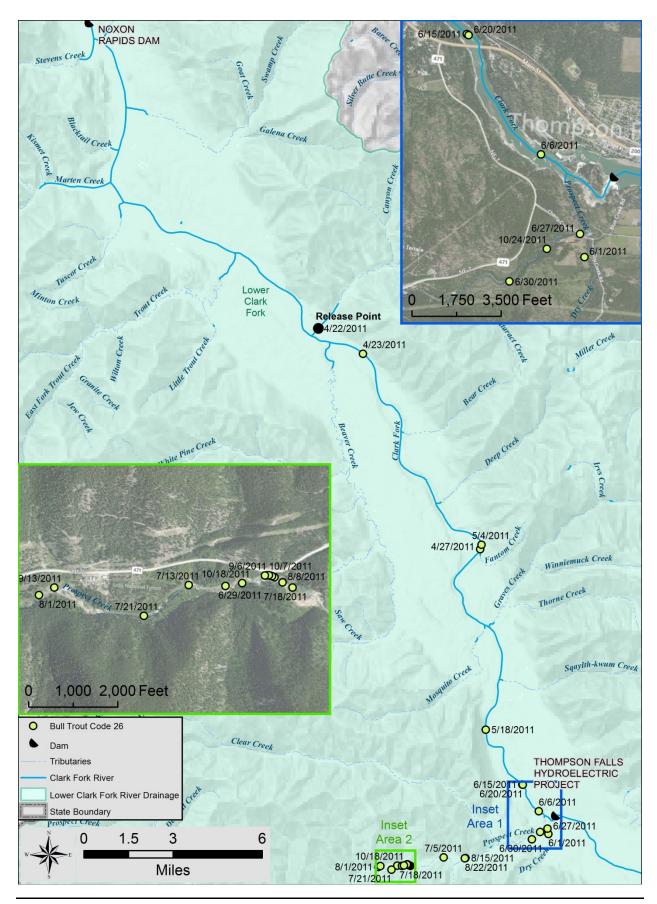

Bull trout 26 was released immediately upstream of Vermilion Bay on April 22, 2011. Bull trout 26 was detected below Thompson Falls Dam on June 1 and 6, 2011 and then moved downstream to the Highway 200 bridge crossing before finally migrating back upstream into Prospect Creek. The fish remained in Prospect Creek between June 27 and October 24, 2011 (the last detection recorded). The detections of bull trout 26 are depicted in Figure 4-1.

Table 4-2: Summary of radio telemetry monitoring of tagged bull trout captured below Cabinet Gorge Dam in 2011, assigned to Region 4, and released in Regions 3. (Source: Avista 2011).

| Bull<br>Trout<br>Code | PIT Tag #       | Initial<br>Capture<br>Date | Release<br>Location   | Last Date<br>Detected                | Last Location<br>Detected                                               | Pass Through Dam (If<br>Yes, Which Facility)                                                                                | Approach Thompson Falls Project Tailrace?                                                                                                              |
|-----------------------|-----------------|----------------------------|-----------------------|--------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30                    | 985121016700474 | 5/5/2010                   | Thompson River (R4)   | 8/1/2011 (tag<br>retreived, no fish) | Thompson Falls<br>Reservoir (north of<br>pumphouse)                     | Fish Status Unknown (tag<br>found upstream of<br>Thompson Falls Dam)                                                        | No                                                                                                                                                     |
| 32                    | 985121021199577 | 4/29/2010                  | Thompson River (R4)   | 6/6/2011                             | Vermilion River Bridge                                                  | Yes, Thompson Falls Dam<br>between May 6-11, 2010.<br>Passed through turbines.                                              | No                                                                                                                                                     |
| 26                    | 985121021183536 | 4/19/2011                  | Vermilion Bay<br>(R3) | 10/24/2011                           | Prospect Creek                                                          | No                                                                                                                          | Yes. Detected below dam near old powerhouse on 6/1/2011 and 6/6/2011. Then moved downstream before migrating into Prospect Creek 6/27/2011-10/24/2011. |
| 29                    | 985121021159735 | 4/24/2011                  | Vermilion Bay<br>(R3) | 11/18/2011                           | Clark Fork River, below train trestle (Marten Creek Road)               | No                                                                                                                          | No                                                                                                                                                     |
| 37                    | 985121021199621 | 5/17/2011                  | Vermilion Bay<br>(R3) | 12/6/2011                            | Mouth of Rock Creek                                                     | Yes. Downstream of<br>Noxon Rapids Dam on<br>June 21, 2011.                                                                 | No                                                                                                                                                     |
| 35                    | 985121021152977 | 5/22/2011                  | Vermilion Bay<br>(R3) | 10/26/2011                           | Detected at remote<br>monitoring staion<br>downstream of Cabinet<br>Dam | Yes, two facilities. Downstream of Noxon Rapids Dam on June 25, 2011. Downstream of Cabinet Gorge Dam in late October 2011. | No                                                                                                                                                     |

| Bull<br>Trout<br>Code | PIT Tag#        | Initial<br>Capture<br>Date | Release<br>Location   | Last Date<br>Detected | Last Location<br>Detected                                                                                                                                          | Pass Through Dam (If<br>Yes, Which Facility) | Approach Thompson Falls Project Tailrace?                                                                                                                                               |
|-----------------------|-----------------|----------------------------|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38                    | 985121021203256 | 6/2/2011                   | Vermilion Bay<br>(R3) | 12/5/2011             | Clark Fork River, near<br>town of Trout Creek                                                                                                                      | No                                           | Yes. Detected below dam near old powerhouse, high bridge, and mouth of Prospect Creek between 6/9-7/21/2011. Not detected again until 10/7/2011 downstream near town of Trout Creek     |
| 36                    | 985121001919071 | 6/5/2011                   | Vermilion Bay<br>(R3) | 12/19/2011            | Graves Creek Mouth<br>on 7/18/2011, then<br>downstream<br>approximately 8.5 miles<br>8/1-12/19/2011.<br>Possible tag is out of<br>water between 8/1-<br>12/19/2011 | No                                           | No                                                                                                                                                                                      |
| 39                    | 985121021146823 | 6/19/2011                  | Vermilion Bay<br>(R3) | 8/30/2011             | Marten Creek Bay<br>Bridge                                                                                                                                         | No                                           | No                                                                                                                                                                                      |
| 40                    | 985121021183908 | 6/21/2011                  | Vermilion Bay<br>(R3) | 7/13/2011             | High Bridge at Thompson Falls Dam (approximately 22 miles upstream of release site)                                                                                | No                                           | Yes. Fish only detected between 6/27/2011 and 7/13/2011. Located at Thompson Falls State Park on 6/27/2011, then below dam on 6/30/2011 and 7/5/2011, then at high bridge on 7/13/2011. |

Figure 4-1: Radio telemetry monitoring results for bull trout 26 detected near Thompson Falls Dam in 2011.



Bull trout 38 was released immediately upstream of Vermilion Bay on June 8, 2011. Bull trout 38 was only a couple miles upstream from the release site on June 9 and then was detected near the old powerhouse (Thompson Falls Dam) on June 15 and then at the confluence of Prospect Creek on June 20. The bull trout remained in the vicinity below the main dam between June 30 and July 5, 2011 before moving downstream. On July 13 bull trout 38 was detected near the old powerhouse and then upstream in the confluence of Prospect Creek on July 21. Bull trout 38 was not detected again until October 7, 2011 in Marten Creek (over 20 miles downstream of Thompson Falls Dam). In November and December (last detection recorded on December 5, 2011), bull trout 38 was detected near the town of Trout Creek. The detections of bull trout 38 are depicted in Figure 4-2.

Bull trout 40 was released immediately upstream from Vermilion Bay on June 24, 2011. Bull trout 40 was only detected between June 24 and July 13, 2011. During this time, bull trout 40 was recorded near the Thompson Falls State Park on June 27, 2011 and then below the Thompson Falls Dam and near the High Bridge on June 30, July 5, and July 13. The detections of bull trout 40 are depicted in Figure 4-3.

The Thompson Falls fish ladder was in operation between March 17 and May 24, between June 21 and 24, between July 11 and 13, and between August 22 and October 17, 2011. Although three bull trout (26, 38, 40) were detected in the vicinity of Thompson Falls Dam, none of the bull trout radio tagged (*refer to* Table 4-1) and monitored in 2011 was detected in the fish ladder via the remote PIT antennas located in the ladder pools or captured in the holding pool. These fish were in the area of the fish ladder during a period when flows were uncharacteristically high and ladder operations were limited.

During Thompson Falls fish ladder operations in June and July, only three fish (two northern pikeminnow and one rainbow trout) were captured at the ladder (all on July 13 with streamflow of 57,000 cfs), thus overall ability of fish to reach the ladder or detect the entrance to the ladder appeared to be hampered, which was associated with higher than average streamflows during spring 2011. Streamflows during June ladder operations were between 88,000 and 100,194 cfs. Streamflows during July ladder operations ranged between 56,480 and 66,740 cfs. Additional years of operational and fish data collection will assist in further evaluating the efficiency of the ladder to attract fish and help determine if there is a limit of the ladder effectiveness as related to streamflow.

Figure 4-2: Radio telemetry monitoring results for bull trout 38 detected near Thompson Falls Dam in 2011.

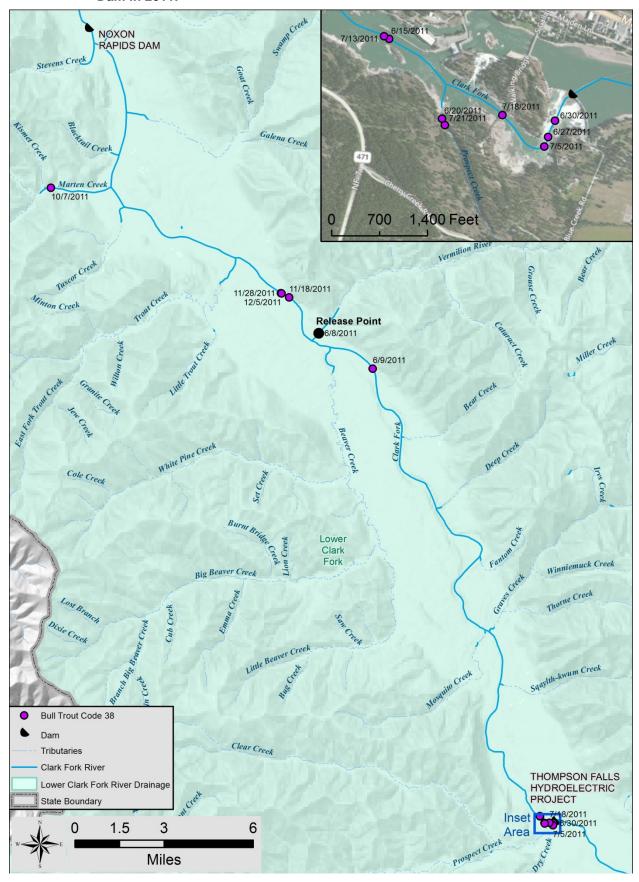
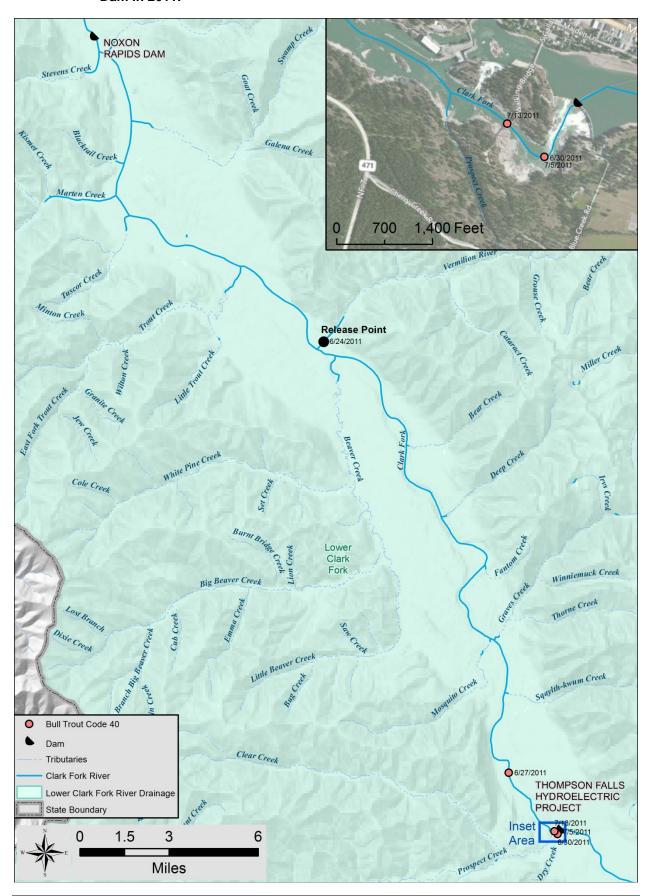




Figure 4-3: Radio telemetry monitoring results for bull trout 40 detected near Thompson Falls Dam in 2011.



#### 4.1.2 Bull Trout 35

Bull trout 35 was captured on May 17, 2011 via night electrofishing in the lower Clark Fork River downstream of Cabinet Gorge Hydroelectric Project along the top end of the north bank section (Clark Fork River kilometer 242). Bull trout 35 was genetically assigned to Fishtrap Creek (Region 4) with a confidence level of 5.5. Tagging information for this fish is provided in Table 4-3. Below is a summary of this bull trout's movement monitored between May 20 and October 26, 2011.

| <b>Table 4-3:</b> | Summary | / of the radio and PIT | tag for bull trout 35. |
|-------------------|---------|------------------------|------------------------|
|-------------------|---------|------------------------|------------------------|

| Surgery Information  |                                                                        |  |  |  |
|----------------------|------------------------------------------------------------------------|--|--|--|
| Species              | Bull trout                                                             |  |  |  |
| Radio frequency      | 148.500 code 35 (500-35)                                               |  |  |  |
| PIT tag number       | 985121021152977                                                        |  |  |  |
| Length               | 710 millimeters                                                        |  |  |  |
| Weight               | 3856 grams                                                             |  |  |  |
| Sex                  | Female                                                                 |  |  |  |
| Surgery date         | 5/20/11                                                                |  |  |  |
| Genetics information | Fishtrap Creek (R4) / East Fork Bull River (R2) / Confidence = 5.53809 |  |  |  |

Bull trout 35 was tagged (radio and PIT), transported, and then released upstream 57 kilometers to Noxon Reservoir immediately upstream of Vermilion Bay (Clark Fork River kilometer 299) on May 20, 2011. Between May 24 and June 9, 2011, this bull trout was detected between Trout Creek boat ramp and Highway 200 bridge, which is approximately 4 kilometers downstream of the release site. On June 25, 2011, bull trout 35 moved downstream of Noxon Rapids Dam. Between June 24 and October 22, 2011, this bull trout was continuously detected approximately 27 kilometers downstream of the release site (Clark Fork River kilometer 272.4) near the Noxon Springs remote monitoring station with one exception when the fish entered Bull River Bay for a brief period on October 18, 2011. Between October 18 and 24, bull trout 25 moved downstream of Cabinet Gorge Dam. The remainder of the monitoring period (October 24 through October 26, 2011), this bull trout was detected downstream of Cabinet Gorge Dam at around Clark Fork River kilometer 242, approximately 57 kilometers downstream of the release site.

### 4.1.3 Bull Trout 37

Bull trout 37 was captured on May 22, 2011 via night electrofishing in the lower Clark Fork River downstream of Cabinet Gorge Hydroelectric Project along the top end of the north bank section (Clark Fork River kilometer 242). Bull trout 37 was genetically assigned to Thompson River (Region 4) with a confidence level of 48,193,900. Tagging information for this fish is provided in Table 4-4. Below is a summary of this bull trout's movement monitored between May 25 and December 6, 2011.

Table 4-4: Summary of the radio and PIT tag for bull trout 37.

| Surgery Information  |                                                                       |  |  |  |
|----------------------|-----------------------------------------------------------------------|--|--|--|
| Species              | Bull trout                                                            |  |  |  |
| Radio frequency      | 148.500 code 37 (500-37)                                              |  |  |  |
| PIT tag number       | 985121021199621                                                       |  |  |  |
| Length               | 530 millimeters                                                       |  |  |  |
| Weight               | 1360 grams                                                            |  |  |  |
| Sex                  | Female                                                                |  |  |  |
| Surgery date         | 5/25/11                                                               |  |  |  |
| Genetics information | Thompson River (R4) / Upper Rock Creek (R4) / Confidence = 48,193,900 |  |  |  |

Bull trout 37 was tagged (radio and PIT), transported, and then released upstream 57 kilometers to Noxon Reservoir immediately upstream of Vermilion Bay (Clark Fork River kilometer 299) on May 25, 2011. On June 15, 2011, bull trout 37 was detected approximately 13 kilometers downstream of the release site below the railroad trestle downstream of the North Shore boat ramp in the Noxon Reservoir (Clark Fork River kilometer 286). On June 21, 2011, bull trout 37 moved downstream of Noxon Rapids Dam. During the remaining monitoring period (June 21 through December 6, 2011), bull trout 37 was most often detected near Clark Fork River kilometer 271 and 272.4, approximately 27 kilometers downstream of the release site. Clark Fork River kilometer 271 is near the mouth of Rock Creek. This bull trout was also detected in Elk Creek Bay (Clark Fork River kilometer 252.2) on July 28 and 29 and in inner Bull River Bay between August 4 and August 19, 2011.

# 5.0 Thompson River Drainage (5-Year Reservoir Plan)

In 2010, PPL Montana developed and submitted the 5-Year Reservoir Monitoring Plan (2011-2015) to the FERC. The FERC issued an Order on February 9, 2011 approving the plan. PPL Montana started to implement the plan in 2011.

The overall goal of the plan is to gather information that will assist in developing recommendations to *maximize survival of outmigrant juvenile and adult bull trout through Thompson Falls Reservoir and Dam*. In order to address this goal, two objectives were identified including the:

- 1. Characterization of bull trout in the Thompson River drainage
- 2. Characterization of the affect that the Thompson Falls Reservoir has on bull trout emigrating from the Thompson River drainage and migrating downstream in the Clark Fork River.

The following sections describe the activities recently completed to address the objectives of the 5-Year Reservoir Monitoring Plan. A review of available historic data for the Thompson River drainage and identification of data gaps is discussed in Section 5.1. Fisheries data collected in 2010 for the West Fork Thompson River and collected in 2011 for Fishtrap Creek are summarized in Sections 5.2 and 5.3, respectively.

# 5.1 Historic Data Review and Information Gaps

To address the first objective in the 5-Year Reservoir Monitoring Plan, PPL Montana coordinated with the TAC, FWS, Plum Creek Timber Company, Avista, and USFS to review available historic data, available literature, identify data gaps and develop a plan for future data collection/studies/projects in the Thompson River drainage. Below is a description of the data review process and Thompson River Drainage database that was developed, as well as activities planned for 2012.

## 5.1.1 Thompson River Drainage Database

PPL Montana coordinated with several agencies and organizations to gather historic information (data and reports) on streams in the Thompson River drainage. Information (data and reports) were provided by Plum Creek Timber Company, Avista, USFS, MDEQ, FWS, and FWP. The data were compiled into a database and currently includes information from 1973 through 2011.

The purpose of creating the Thompson River database was to compile a recent record of the existing information available for the streams within the Thompson River drainage. This information includes habitat surveys, temperature data, fisheries information, and other study/survey information for the Thompson River and its tributaries. The objective of the database is to provide resource managers with a record of what information currently exists and

what type of studies have been completed in particular streams or stream reaches. A secondary objective of the database is to identify data gaps within the Thompson River drainage and to identify potential future studies/management objectives for resource managers (i.e., bull trout management). It is anticipated that the database will be updated periodically with information from future studies that are completed within the Thompson River drainage. The database was distributed to the TAC, FWS, USFS, Plum Creek Timber Company, and Avista. A subcommittee of this group will meet in 2012 to review and discuss future studies needed to fill the data gaps and identify potential on-the-ground projects to benefit the native salmonid fisheries, specifically bull trout habitat.

The Thompson River database was created by examining each electronic file that was provided by the agencies and organizations identified above. The files were examined and assigned a unique habitat data identification (ID) number, temperature data ID number, and/or fisheries data ID number, depending on the information that was specifically available in the file. A database was developed and delineated into three separate worksheets. The first worksheet (titled *Reports\_List*) created summarizes the information contained in each file including: electronic file name; habitat, temperature, and fisheries data ID numbers; report author names; report year; title of the report/data; type of data contained in the file (e.g., geographic information systems, report, data, map, etc.); the tributary/stream name for the survey/location of report; the drainage in which the surveyed stream occurs (i.e., Thompson River, Fishtrap Creek, West Fork Thompson River, and/or Little Thompson River); originator of the report/data; agency/organization that published the report/data; and any comments regarding the specific files.

The second worksheet (titled *Habitat & Fisheries Summary*) summarizes the habitat, temperature, and fisheries information that were available in the files; specific data for each of the habitat, temperature, and fisheries parameters were recorded. The information within the Habitat & Fisheries Summary worksheet includes: stream name (drainage); tributary name (subject of the report/data); report/data year; and various study parameters that may include: habitat survey completed; Wolman pebble count, flow; water chemistry; redd counts; snorkel survey; electrofishing; weir study; fish density; genetics; bull trout presence; corresponding habitat, temperature, and fisheries ID numbers; corresponding electronic file names; maximum temperature; date of maximum temperature when recorded; additional temperature data; range of dates surveyed for temperature; specific comments regarding temperature; and general comments.

The third worksheet (titled *Available Data by Stream*) was created within the spreadsheet that summarizes the type of data available and the documented presence of bull trout for the streams within the Thompson River drainage. Table 5-1 (provided below) summarizes the temperature, habitat, and fish data available, by stream, within the Thompson River drainage.

Table 5-1: Summary of data available and bull trout presence in Thompson River drainage. Note: Stream Names in bold represent areas bull trout are known to be present. x = dataavailable; y= bull trout documented.

| Stream/Tributary<br>Name | Temperature Data<br>Available | Habitat Data<br>Available | Fish Data<br>Available | Bull Trout Present |  |
|--------------------------|-------------------------------|---------------------------|------------------------|--------------------|--|
| Alder Creek              | Х                             | Χ                         | Х                      | Y                  |  |
| Anne Creek               | Х                             | Χ                         | Х                      | Υ                  |  |
| Basin Draw               |                               | Χ                         | Х                      |                    |  |
| Bay State Creek          |                               |                           |                        |                    |  |
| Bear Creek               | Х                             | Χ                         | Х                      |                    |  |
| Beartrap Creek           | Х                             | Х                         | Х                      | Y                  |  |
| (Fork)                   |                               |                           | ^                      |                    |  |
| Beatrice Creek           | X                             | X                         | X                      | Y                  |  |
| Big Hole Creek           | X                             |                           |                        |                    |  |
| Big Rock Creek           | X                             | Χ                         | X                      | Υ                  |  |
| Big Spruce Creek         |                               | Χ                         | X                      | Υ                  |  |
| Boiling Springs<br>Creek | Х                             | X                         |                        |                    |  |
| Calico Creek             |                               |                           |                        |                    |  |
| Chippy Creek             | X                             | Х                         | Х                      |                    |  |
| Cliff Creek              |                               |                           |                        |                    |  |
| Cool Creek               |                               | Х                         |                        |                    |  |
| Corona Creek             |                               |                           |                        |                    |  |
| Daisy Creek              |                               |                           |                        |                    |  |
| Deerhorn Creek           | X                             |                           |                        |                    |  |
| Fishtrap Creek           | X                             | Х                         | Х                      | Υ                  |  |
| Four Lakes Creek         | X                             | Х                         | Х                      | Y                  |  |
| Goat Creek               |                               |                           |                        |                    |  |
| Honeymoon Creek          | X                             |                           | Х                      |                    |  |
| Indian Creek             | X                             |                           |                        |                    |  |
| Jungle Creek             | X                             | Х                         | Х                      | Y                  |  |
| Lazier Creek             | X                             | Х                         | Х                      |                    |  |
| Little Rock Creek        |                               |                           |                        |                    |  |
| Little Thompson<br>River | Х                             | Х                         | Х                      | Y                  |  |
| Mantrap Creek            |                               | Χ                         | X                      |                    |  |
| Marten Creek             |                               |                           |                        |                    |  |
| McGinnis Creek           | Х                             | X                         | Х                      |                    |  |
| McGregor Creek           | Х                             | Х                         | Х                      |                    |  |
| Meadow Creek             |                               |                           |                        |                    |  |
| Mudd Creek               |                               |                           |                        |                    |  |
| Murr Creek               | Х                             | X                         | Х                      | Y                  |  |
| Nancy Creek              |                               |                           |                        |                    |  |
| North Fork Little        | Х                             | X                         | Х                      |                    |  |

| Stream/Tributary<br>Name    | Temperature Data<br>Available | Habitat Data<br>Available | Fish Data<br>Available | Bull Trout Present |  |
|-----------------------------|-------------------------------|---------------------------|------------------------|--------------------|--|
| Thompson River              |                               |                           |                        |                    |  |
| Priscilla Gulch             |                               |                           |                        |                    |  |
| Radio Creek                 |                               | X                         | Х                      |                    |  |
| Semem Creek                 |                               |                           |                        |                    |  |
| Shroder Creek               | Х                             |                           | Х                      |                    |  |
| Tepee Creek                 |                               |                           | Х                      |                    |  |
| Thompson River              | Х                             | X                         | Х                      | Υ                  |  |
| Twin Lakes Creek            | X                             |                           |                        |                    |  |
| West Fork Fishtrap<br>Creek | Х                             | Х                         | Х                      | Y                  |  |
| West Fork<br>Thompson River | Х                             | Х                         | Х                      | Y                  |  |
| Whitney Creek               |                               |                           |                        |                    |  |
| Young Creek                 |                               | Х                         | Х                      |                    |  |

The Thompson River database spreadsheet is set up with filters for each data parameter that allows a query to be completed for specific information (e.g., what streams have recorded occurrences of bull trout). Multiple filters can be utilized concurrently that allows a query for more specific information (e.g., maximum temperature recorded in Fishtrap Creek for a specific year). The queries are initiated by selecting the specific parameters within the spreadsheet by clicking on the down-arrow tab located in the title block row for each of the parameters.

#### 5.2 West Fork Thompson River Drainage 2010 Fisheries Survey

The West Fork Thompson River drainage was surveyed by FWP in 2010 to obtain population estimates of fish species throughout the drainage. Electrofishing surveys were completed at seven locations within the West Fork Thompson River drainage, depicted on Figure 5-1. Five of the seven survey sites were located on the main stem of the West Fork Thompson River, and one site was located each on Four Lakes Creek and Anne Creek.

The average survey section length for the seven sites was 104 meters. Bull trout were captured at each of the survey locations, and bull trout densities were generally greater the further upstream the survey sites were located (Table 5-2). A total of 140 bull trout were captured, ranging in size from 70 to 251 mm. The majority of the bull trout were captured at Sites 1B, 2, Four Lakes, and Anne Creek (see Figure 5-1).

In addition to bull trout, other species and numbers captured at the West Fork Thompson River drainage survey sites included 205 westslope cutthroat trout, 11 rainbow trout, and five rainbow x westslope cutthroat hybrids. The 2010 West Fork Thompson River drainage raw data are provided in Appendix C.

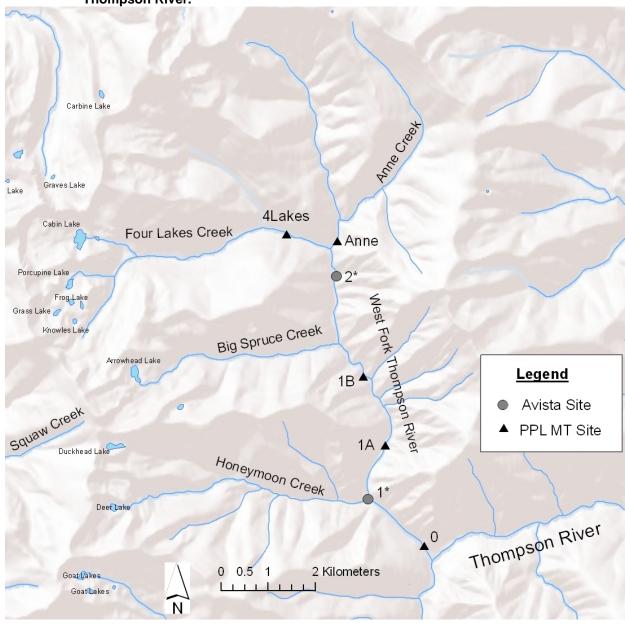



Figure 5-1: Site locations where 2010 fisheries surveys were completed in the West Fork Thompson River.

Table 5-2: Summary of density estimates for fisheries data collected during 2010 electrofishing in the West Fork Thompson River.

|                       | the state of the s |                                           |            |      |            |      |            |        |          |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------|------|------------|------|------------|--------|----------|
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Density Estimates (#/100 m) with 95% C.I. |            |      |            |      |            |        |          |
| Site                  | Section<br>Length (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BULL                                      |            | WCT  |            | RB   |            | RBxWCT |          |
| 0                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                       | 2.0 -2.0   | 10.0 | 9.0-13.0   | 10.0 | 10.0 -10.0 | -      | -        |
| 1                     | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.9                                      | 11.9 -11.9 | 59.7 | 59.7 -68.5 | 1.5  | 1.5 -1.5   | 4.5    | 4.5 -4.5 |
| 1A                    | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0                                       | 9.0 - 9.0  | 44.3 | 36.9 -49.2 | -    | -          | -      | -        |
| 1B                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.0                                      | 22.0 -22.0 | 22.0 | 21.0 -35.0 | -    | -          | -      | -        |
| 2                     | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36.7                                      | 36.7 -42.5 | 14.2 | 14.2 -14.2 | -    | -          | 1.7    | 1.7 -1.7 |
| 1.4,<br>Four<br>Lakes | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.6                                      | 24.6 -27.1 | 26.3 | 26.3 -26.3 | -    | -          | -      | -        |
| Anne<br>Creek         | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.1                                      | 23.1 -30.8 | 29.8 | 29.8 -29.8 | -    | -          | -      | -        |

## 5.3 Fishtrap Creek Drainage 2011 Fisheries Survey

The Fishtrap Creek drainage was surveyed by Avista in 2011 to obtain population estimates of fish species throughout the drainage (Figure 5-2). Avista completed electrofishing surveys in Fishtrap Creek, Jungle Creek, Beatrice Creek, West Fork Fishtrap Creek, and Beartrap Creek. The results of the 2011 fish population surveys are provided in the following sections.

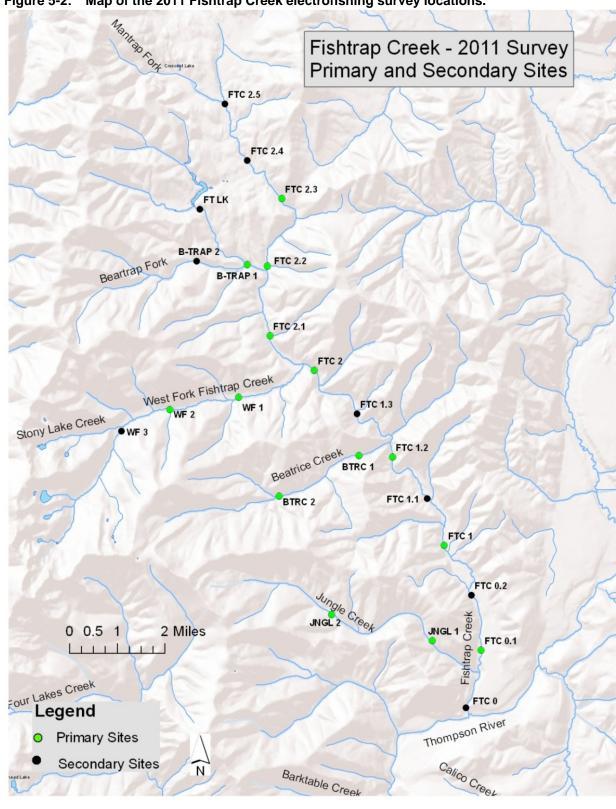



Figure 5-2: Map of the 2011 Fishtrap Creek electrofishing survey locations.

#### 5.3.1 Fishtrap Creek

Electrofishing survey data were provided for eight sites located on Fishtrap Creek; data was not provided for the five survey locations referred to as FTC 0, FTC 0.1, FTC 0.2, FTC 1.3, and FTC 2.5 (*refer to* Figure 5-2). The average survey section length for the eight survey sites was 108.5 meters. Bull trout were captured at each of the survey locations except for FTC 2.4 (Table 5-3). A total of 60 bull trout were captured at the survey locations on Fishtrap Creek, ranging in size from 63 to 254 mm. Bull trout densities (per 100 meters) varied between 1.6 and 14 fish per 100 meters (Table 5-3). At Site 2 no bull trout density was available, but 14 individual bull trout were recorded during the electrofishing survey. Bull trout densities were greatest in reaches 1.2, 2.2 and 2.3.

In addition to bull trout, other species and numbers captured at the eight Fishtrap Creek survey sites included 352 westslope cutthroat trout, 16 mountain whitefish, two rainbow trout, and four rainbow x westslope cutthroat hybrids. The 2011 Fishtrap Creek drainage raw data are provided in Appendix D.

Table 5-3: Standardized density estimates for bull, rainbow, westslope cutthroat (WCT), rainbow x westslope cutthroat hybrid (RBxWCT), and mountain whitefish during electrofishing of Fishtrap Creek in 2011.

|          |                          | CIECK III Z |                               |            |                                    |             |                     |
|----------|--------------------------|-------------|-------------------------------|------------|------------------------------------|-------------|---------------------|
| Location | Section<br>Length<br>(m) | Species     | Estimate<br>per 100<br>meters | 95% C.I.   | Estimate<br>per 100 m <sup>2</sup> | 95%<br>C.I. | g/100m <sup>2</sup> |
|          |                          | BULL        | 1.6                           | 1.6-1.6    | 0.16                               | 0.16-0.16   | 8.79                |
| Site 1   | 128                      | MWF         | 4.7                           | 4.7-4.7    | 0.49                               | 0.49-0.49   | 53.86               |
| Sile i   | 120                      | WCT         | 26.6                          | 25.0-29.9  | 2.77                               | 2.60-3.12   | 67.79               |
|          |                          | RBxWCT      | 1.6                           | 1.6-1.6    | 0.16                               | 0.16-0.16   | 2.03                |
|          |                          |             | 3.1                           | 3.1-3.1    | 0.31                               | 0.31-0.31   | 17.38               |
| Site 1.1 | 130                      | MWF         | 2.3                           | 2.3-3.4    | 0.23                               | 0.23-0.34   | 33.99               |
| Sile 1.1 | 130                      | RB          | 0.8                           | 0.8-0.8    | 0.08                               | 0.08-0.08   | 4.92                |
|          |                          | WCT         | 16.9                          | 16.2-19.6  | 1.69                               | 1.62-1.96   | 53.31               |
|          |                          | BULL        | 14.0                          | 13.0-17.1  | 1.49                               | 1.38-1.82   | 44.38               |
| Site 1.2 | 100                      | MWF         | 4.0                           | 4.0-4.0    | 0.43                               | 0.43-0.43   | 99.28               |
| Sile 1.2 |                          | WCT         | 50.0                          | 47.0-55.4  | 5.32                               | 5.00-5.90   | 298.40              |
|          |                          | RBxWCT      | 2.0                           | 2.0-2.0    | 0.21                               | 0.21-0.21   | 6.70                |
|          |                          | BULL        | N/A                           | N/A        | N/A                                | N/A         | N/A                 |
| Site 2   | 90                       | MWF         | 3.3                           | 3.0-4.8    | 0.48                               | 0.48-0.69   | 112.08              |
| Site 2   | 90                       | RB          | 1.1                           | 1.1-1.1    | 0.16                               | 0.16-0.16   | 33.49               |
|          |                          | WCT         | 84.4                          | 52.0-127.0 | 12.24                              | 8.37-18.42  | 731.85              |
| C:to 0.4 | 407                      | BULL        | 4.7                           | 4.7-4.7    | 0.81                               | 0.81-0.81   | 13.86               |
| Site 2.1 | 107                      | WCT         | 17.8                          | 17.8-18.7  | 3.06                               | 3.06-3.21   | 46.23               |
| Site 2.2 | 103                      | BLT         | 11.7                          | 11.7-13.1  | 3.76                               | 3.76-4.21   | 136.05              |
| Sile 2.2 | 103                      | WCT         | 49.5                          | 45.6-56.3  | 15.97                              | 14.72-18.15 | 404.10              |
| Sito 2.2 | 100                      | BULL        | 11.0                          | 10.0-14.9  | 2.20                               | 2.00-2.99   | 61.38               |
| Site 2.3 | 100                      | WCT         | 75.0                          | 71.0-81.3  | 15.00                              | 14.20-16.26 | 264.00              |
| Site 2.4 | 110                      | WCT         | 52.7                          | 50.0-57.7  | 12.55                              | 11.90-13.74 | 222.21              |

## 5.3.2 Jungle Creek

Electrofishing surveys were completed at two sites located on Jungle Creek (*refer to* Figure 5-2). The average survey section length for the two sites was 108.5 meters. A total of nine bull trout were captured at both of the survey locations (three at Site 1 and six at Site 2), ranging in size from 137 to 239 mm. Although the Jungle Creek sample size is small, the data indicate that bull trout densities (Table 5-4) may be generally lower (three to six bull trout per 100 meters) than other surveyed stream reaches within the Fishtrap Creek drainage.

In addition to bull trout, 112 westslope cutthroat trout were captured at the two Jungle Creek sites. The 2011 Fishtrap Creek drainage raw data are provided in Appendix D.

Table 5-4: Total and estimated (fish≥75mm) number of bull (BULL), and westslope cutthroat trout (WCT), captured during electrofishing surveys of Jungle Creek in 2011.

| Location | Section<br>Length<br>(m) | Species | Estimate per 100 meters | 95% C.I.  | Estimate per 100 m <sup>2</sup> | 95% C.I.    | g/100m <sup>2</sup> |
|----------|--------------------------|---------|-------------------------|-----------|---------------------------------|-------------|---------------------|
| Sito 1   | Site 1 100               | BULL    | 4.0                     | 3.0-10.8  | 0.98                            | 0.73-2.64   | 59.22               |
| Sile i   |                          | WCT     | 49.0                    | 48.0-51.3 | 11.95                           | 11.71-12.51 | 510.32              |
| Site 2   | 117                      | BULL    | 6.0                     | 5.1-9.3   | 1.50                            | 1.28-2.32   | 70.75               |
| Site 2   | 117                      | WCT     | 46.2                    | 45.3-48.1 | 11.54                           | 11.32-12.02 | 544.62              |

#### 5.3.3 Beatrice Creek

Electrofishing surveys were completed at two sites located on Beatrice Creek (*refer to* Figure 5-2). The average survey section length for the two sites was 106.5 meters. Bull trout were captured at both of the survey locations. A total of 96 bull trout were captured at both sites and ranged in size from 68 to 300 mm. Based on the results from the two sites, bull trout densities in Beatrice Creek were much greater at Site 1 (70 bull trout per 100 meters) than Site 2 (18 bull trout per 100 meters) (Table 5-5).

In addition to bull trout, 75 westslope cutthroat trout were also captured at the two Beatrice Creek survey sites. The 2011 Fishtrap Creek drainage raw data are provided in Appendix D.

Table 5-5: Standardized density estimates for bull (BULL) and westslope cutthroat trout (WCT)in Beatrice Creek in 2011.

| Location | Section<br>Length<br>(m) | Species | Estimate<br>per 100<br>meters | 95% C.I.  | Estimate per 100 m <sup>2</sup> | 95% C.I.    | g/100m <sup>2</sup> |     |     |      |           |      |           |        |
|----------|--------------------------|---------|-------------------------------|-----------|---------------------------------|-------------|---------------------|-----|-----|------|-----------|------|-----------|--------|
| Site 1   | 113                      | BULL    | 69.9                          | 66.4-75.7 | 12.71                           | 12.07-13.77 | 144.91              |     |     |      |           |      |           |        |
| Site i   | 113                      | 113     | 113                           | 113       | 113                             | 113         | 113                 | 113 | WCT | 37.2 | 37.2-38.3 | 6.76 | 6.76-6.96 | 308.83 |
| Site 2   | 100                      | BULL    | 18.0                          | 17.0-20.7 | 4.00                            | 3.78-4.60   | 217.60              |     |     |      |           |      |           |        |
| Site 2   | 100                      | WCT     | 31.0                          | 31.0-31.0 | 6.89                            | 6.89-6.89   | 286.58              |     |     |      |           |      |           |        |

## 5.3.4 West Fork Fishtrap Creek

Electrofishing surveys were completed at three sites located on West Fork Fishtrap Creek (*refer to* Figure 5-2). The average survey section length for the three sites was 94.7 meters. Bull trout were captured at all three of the survey locations. A total of 59 bull trout were captured at the survey locations, ranging in size from 81 to 300 mm. Based on the results from the three sites, bull trout density estimates were greatest, approximately 37 per 100 meters, in the middle of the surveyed stream reach, at Site 2, compared to Site 1 and Site 3 with density estimates of 16.5 and 10.1 per 100 meters, respectively (Table 5-6).

In addition to bull trout, 137 westslope cutthroat trout were captured at the three West Fork Fishtrap Creek survey sites with the greatest number (64 westslope cutthroat trout) captured at Site 2. The 2011 Fishtrap Creek drainage raw data are provided in Appendix D.

Table 5-6: Standardized density estimates for bull (BULL) and westslope cutthroat trout (WCT) in West Fork Fishtrap Creek in 2011.

| Location | Section<br>Length<br>(m) | Species | Estimate<br>per 100<br>meters | per 100 95% C.I. Estin |      | 95% C.I.  | g/100m <sup>2</sup> |
|----------|--------------------------|---------|-------------------------------|------------------------|------|-----------|---------------------|
| Site 1   | 85                       | BULL    | 16.5                          | 16.5-16.5              | 2.50 | 2.50-2.50 | 108.81              |
| Site i   | 00                       | WCT     | 30.6                          | 27.1-34.1              | 4.63 | 4.46-5.16 | 234.51              |
| Site 2   | 100                      | BULL    | 37.0                          | 36.0-39.6              | 6.38 | 6.21-6.82 | 125.03              |
| Sile 2   | 100                      | WCT     | 38.0                          | 37.0-40.1              | 6.55 | 6.38-6.91 | 305.31              |
| Site 3   | 99                       | BULL    | 10.1                          | 9.0-13.0               | 2.02 | 1.82-2.59 | 70.91               |
| JILE 3   |                          | WCT     | 35.4                          | 34.0-37.5              | 7.07 | 6.87-7.50 | 199.39              |

#### 5.3.5 Beartrap Creek

Electrofishing surveys were completed at two sites located on Beartrap Creek (*refer to* Figure 5-2). The average survey section length for the two sites was 98.5 meters. Bull trout were captured at only one of the survey locations; a total of 44 bull trout were captured at Site 1, and ranged in size from 97 to 135 mm. In addition to bull trout, 75 westslope cutthroat trout were also captured at Site 1. Fish densities in Site 1 were approximately 46 bull trout per 100 meters and 77 westslope cutthroat trout per 100 meters (Table 5-7). As was the case with bull trout, no other species were captured at Site 2. The 2011 Fishtrap Creek drainage raw data are provided in Appendix D.

Table 5-7: Standardized density estimates for bull (BULL) and westslope cutthroat trout (WCT) in Beartrap Creek in 2011.

| Location | Section<br>Length<br>(m) | Species | Estimate<br>per 100<br>meters | 95% C.I.  | g/m <sup>2</sup> Estimate per 100 m <sup>2</sup> |       | 95%<br>C.I.     | g/100m <sup>2</sup> |
|----------|--------------------------|---------|-------------------------------|-----------|--------------------------------------------------|-------|-----------------|---------------------|
|          |                          | BULL    | 46.4                          | 44.0-48.9 | 1.4                                              | 9.87  | 9.65-10.40      | 135.23              |
| Site 1   | 97                       | WCT     | 77.3                          | 74.8-79.8 | 2.1                                              | 16.45 | 16.23-<br>16.98 | 208.93              |
| Site 2   | 100                      | No fish | N/A                           | N/A       | N/A                                              | N/A   | N/A             | N/A                 |

# 6.0 Total Dissolved Gas (TDG) Study

#### 6.1 Methods

#### 6.1.1 Total Dissolved Gas Monitoring

PPL Montana has monitored total dissolved gases (TDG) in the Clark Fork River in the Thompson Falls Hydroelectric Project area since 2003. All field work and data gathering is conducted by PPL Montana personnel.

Hydrolab Series 4 and 5 DataSondes fitted with Total Dissolved Gas (TDG) sensors are used to collect TDG data. DataSonde TDG sensors are calibrated by the manufacturer, Hydrolab, every two to three years. At the beginning of the year, TDG sensors are compared to each other for accuracy and brought to within 1 mmHg of each other if necessary. Sensor membranes are pressure tested by PPL Montana to approximately 1000 mmHg at the beginning of the spill season. Each membrane is used once during the spill season.

TDG is monitored during the high flow season, typically from April until July, with exact dates varying slightly every year. In 2011, TDG was monitored from April 8 to July 27 (slightly longer at the High Bridge and Birdland Bay Bridge). Deployment periods for the DataSonde units were three - four weeks. Biological and sediment fowling is not a problem at the water temperatures found at the project site over this length of time. All parameters including pH, specific conductivity, DO and turbidity are calibrated at the beginning of each 4-week deployment period. During calibrations, sensors are cleaned and batteries replaced. Time and date are checked. The stated accuracy of the TDG sensor is +/- 1.5 mm Hg over a range of 400 to 1400 mmHg.

Barometric pressure (BP) is measured by an Onset Computer Corp HOBO Microstation Barometric Pressure Smart Sensor with a stated error of  $\pm 1.5$  mbar = 1.1 mmHg at 25°C and a maximum error of  $\pm 1.5$  mbar = 0.9 mm Hg over the temperature range  $\pm 10$ °C to  $\pm 60$ °C. The barometer is mounted approximately 6 feet above the floor of the Control Room in the old powerhouse. The elevation of the barometer is approximately 2381.2 msl.

Monitoring sites have varied in some years, but in 2011 the sites monitored were 1) above dam, 2) High Bridge, and 3) Birdland Bay Bridge, (Figure 6-1). The High Bridge monitoring site captures information on TDG at a location that is downstream of the Main Dam spillway and the falls, but is upstream of where the Dry Channel Dam spill enters the river. The Birdland Bay Bridge monitoring site captures information on the level of TDG entering Noxon Rapids Reservoir. All three sensors suffered failures during some periods during the 2011 monitoring season. However, the data recovery is sufficiently complete to draw conclusions on TDG in the Clark Fork River during 2011.



Figure 6-1: Monitoring locations for total dissolved gas at the Thompson Falls Hydroelectric Project site.

## 6.1.2 Impact of Operations on TDG

The Thompson Falls Fish Ladder was completed in March 2011. Therefore, 2011 was the first year of testing to determine the impact of the fish ladder on TDG. The Thompson Falls TAC agreed that attracting fish to the fish ladder would be the priority effort in 2011. For that reason, the Main Dam Spillway was operated in a manner estimated to be most beneficial for attracting fish to the fish ladder.

The impact of the spillway operation on TDG was evaluated through comparison with prior years with differing spillway operations.

# 6.1.3 Gas Bubble Trauma Monitoring

Electrofishing downstream of Thompson Falls Dam between the Main Dam and the Highway 200 Bridge was conducted during high flow time periods in 2011 (Table 6-1). This area was chosen for crew safety and because fish in this reach of river have the highest possibilities of showing symptoms of gas bubble trauma (GBT). Sampling occurred on 10 days when flows

were higher than 50,000 cfs, which is the discharge at which TDG begins to approach 115 percent of saturation at Birdland Bay Bridge.

Electrofishing was conducted with an 18.5 foot, aluminum hull Wooldridge boat with a gasoline generator and a Smith-Root VVP 15A rectifier using 120-160 volts with 4-6 amps. The waveform setting varied and was dependent on conductivity in the river system, which varies seasonally. Two booms were attached to the hull extending 4 feet past the bow with four dangling electrodes per boom. Shocking crews consisted of the boat driver and two netters. Captured fish were put in a 100 gallon holding tank before being measured (total length). All electrofishing was done during daylight hours. Most fish sampled were within 1 meter of the surface, where potential effects from TDG are greatest.

External examination of fishes (all species) included gills, lateral line, and fins. Fish were examined for bubbles, which can be very fine, or off coloring or fraying or unhealthy changes from normal morphology.

Table 6-1: Sampling dates for biological sampling for gas bubble trauma in 2011.

| Date of sampling | Discharge <sup>3</sup> (cfs) | Water Temperature ⁰C | # Fish Examined |
|------------------|------------------------------|----------------------|-----------------|
| 5/18/2011        | 73,733                       | 8.3                  | 48              |
| 5/23/2011        | 74,877                       | 9.5                  | 115             |
| 5/31/2011        | 81,563                       | 8.6                  | 90              |
| 6/1/2011         | 78,529                       | 8.6                  | 85              |
| 6/7/2011         | 89,994                       | 10.2                 | 116             |
| 6/8/2011         | 102,531                      | 10.2                 | 133             |
| 6/14/2011        | 104,382                      | 10.5                 | 128             |
| 6/15/2011        | 105,281                      | 10.5                 | 88              |
| 6/22/2011        | 92,000                       | 11.0                 | 49              |
| 6/23/2011        | 97,728                       | 11.0                 | 97              |

#### 6.2 TDG Results

Peak discharge in the Clark Fork River in the project area in 2011 was approximately twice as much as the long-term average (Figure 6-2), reaching approximately 120,000 cfs in mid-June 2011. In addition, the high flow period lasted about twice as long as is typical; with river flow in excess of 60,000 cfs until mid-July 2011. Clark Fork River flows in the area of the Thompson River Hydroelectric Project were significantly higher in 2011 than in any other year since the TDG study began in 2003 (Figure 6-3).

<sup>&</sup>lt;sup>3</sup> Discharge measured by PPL Montana at the Thompson Falls Hydroelectric Project at noon on the date specified.

Figure 6-2: Discharge in the Clark Fork River in 2011 compared to the long-term average. 2011 data were collected by continuous recorded by PPL Montana at the Thompson Falls Hydroelectric Project site. The long-term average is mean daily flow at the U.S. Geological Survey gage at Plains # 12389000, from 1911 – 2010.

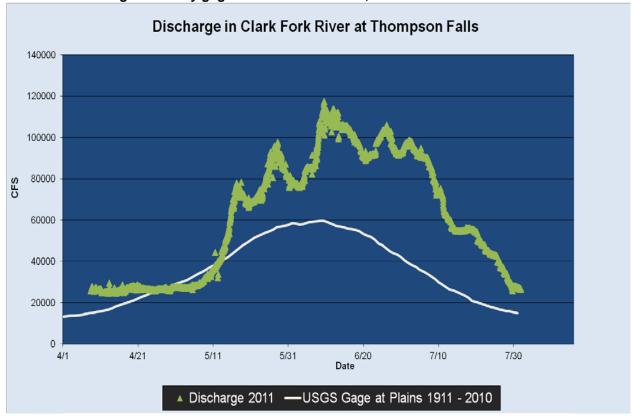
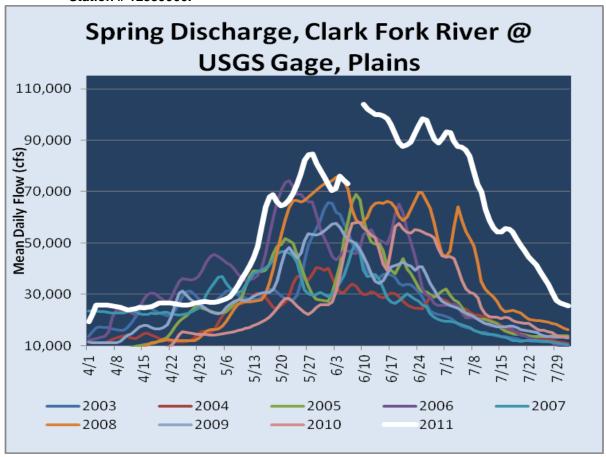




Figure 6-3: Mean daily discharge in the Clark Fork River from April 1 to July 31 in each of the years when TDG data has been collected at the Thompson Falls Hydroelectric Project site. Data collected at the U.S. Geological Survey gage station at Plains, Montana, Station # 12389000.



#### 6.2.1 Measurements of TDG in the Project Area

Similar to past years, TDG in 2011 was lowest above the Project, highest at the first measurement site below the Project (at the High Bridge), and intermediate at the most downstream site at the Birdland Bay Bridge (Figure 6-3). TDG levels declined downstream of the High Bridge as a result of mixing with river flow coming through the powerhouse and, potentially, some degassing as the river moves downstream.

TDG upstream of the Thompson Falls Hydroelectric Project peaked at approximately 108 percent of saturation during 2011. TDG levels at the High Bridge approached 130 percent of saturation, and TDG at the Birdland Bay Bridge site was approximately 122 percent of saturation in 2011. These readings were higher than recorded in previous years at these locations, corresponding to the higher streamflows. These peaks in TDG occurred during peaks in discharge that were higher than had been recorded during previous years.



Figure 6-4: Total Dissolved Gas (% of saturation) and discharge (cfs) in the Clark Fork River upstream and downstream of the Thompson Falls Hydropower Project in 2011.

However, TDG at discharge less than 70,000 cfs was not higher in 2011 than in previous years. Tables 6-2 and 6-3 describe maximum and mean TDG over a range of discharge for each year of the study. Up to a total river discharge of 70,000 cfs, TDG at the Birdland Bay Bridge was comparable to previous years, and often lower than many previous years. Between 50,000 and 60,000 cfs, 2011 had the lowest maximum TDG and tied 2003 as being the years with the lowest mean TDG over this range of flow.

These data indicate that the unusually high TDG readings in 2011 occurred during the time period when the Clark Fork River was flowing in excess of 70,000 cfs.

Table 6-2: Maximum TDG recorded over a range of discharge at the Birdland Bay Bridge on the Clark Fork River, Montana. 2003-2011.

| Total Flow         | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010  | 2011  |
|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| >23,000, <30,000   | 111.5 | 109.6 | 107.6 | 106.7 | 105.6 | 113.1 | 109.5 | 106.0 | 107.6 |
| >30,000, <40,000   | 112.6 | 109.2 | 112.7 | 111.1 | 108.3 | 114.8 | 108.9 | 111.3 | 108.3 |
| >40,000, <50,000   | 111.1 | 108.9 | 113.3 | 115.0 | 112.8 | 115.3 | 112.9 | 113.8 | 109.0 |
| >50,000, <60,000   | 113.9 | N/A   | 114.4 | 116.7 | N/A   | 119.5 | 114.6 | 113.2 | 112.4 |
| >60,000, <70,000   | 114.0 | N/A   | 115.1 | 117.0 | N/A   | 118.2 | 113.1 | N/A   | 116.4 |
| >70,000, <80,000   | 114.1 | N/A   | 114.0 | 117.0 | N/A   | 116.6 | N/A   | N/A   | 116.9 |
| >80,000, <90,000   | N/A   | 120.8 |
| >90,000, <100,000  | N/A   | 122.3 |
| >100,000, <110,000 | N/A   | 121.8 |
| >110,000, <120,000 | N/A   | 121.7 |

Table 6-3: Mean TDG recorded over a range of discharge at the Birdland Bay Bridge on the Clark Fork River, Montana. 2003-2011.

| Total Flow         | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  | 2009  | 2010  | 2011  |
|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| >23,000, <30,000   | 102.1 | 103.5 | 103.6 | 103.6 | 102.5 | 102.2 | 102.6 | 102.0 | 102.9 |
| >30,000, <40,000   | 104.7 | 105.0 | 107.1 | 106.7 | 105.2 | 105.6 | 105.2 | 106.6 | 105.8 |
| >40,000, <50,000   | 109.5 | 107.5 | 110.4 | 110.6 | 109.0 | 110.6 | 109.2 | 110.9 | 108.1 |
| >50,000, <60,000   | 111.0 | N/A   | 112.7 | 114.3 | N/A   | 114.9 | 113.0 | 111.6 | 111.0 |
| >60,000, <70,000   | 112.9 | N/A   | 114.1 | 115.7 | N/A   | 116.0 | 113.1 | N/A   | 113.5 |
| >70,000, <80,000   | 113.2 | N/A   | 114.0 | 115.7 | N/A   | 115.9 | N/A   | N/A   | 116.0 |
| >80,000, <90,000   | N/A   | 116.8 |
| >90,000, <100,000  | N/A   | 119.7 |
| >100,000, <110,000 | N/A   | 120.6 |
| >110,000, <120,000 | N/A   | 119.9 |

#### 6.2.2 Spillway Panel Operations

Photos 6-1 and 6-2 show the Main Dam spillway, with the spill bays numbered. Each spill bay contains 6 spill panels. When opened, the panels release 235 cfs at full pool. In 2006, PPL Montana implemented a specialized spillway operation schedule in an effort to determine if fish can be attracted to the right bank of the Main Dam. This "fish" spillway schedule was implemented during spill operations in 2006, 2007, and 2008. Data collected on TDG during this period indicated that TDG levels may have been slightly higher during the years when the "fish" spill schedule was implemented than during previous years when the "non-fish" schedule was in place. A visual comparison of the "fish" vs. the "non-fish" operating schedule indicated that TDG levels were higher by approximately 2-3 percent under the "fish" operating schedule, when total flow is in excess of approximately 45,000 cfs.

A TDG Control Plan was prepared in 2010 which recommended a spillway opening schedule for the Main Dam Spillway that would be a "dual mode" plan. That is, it was a combination of the "fish" and the "non-fish" spillway opening schedule. This schedule was developed in consultation with operators at the Thompson Falls Hydroelectric Project to enhance fish attraction to the Main Dam to promote adult upstream fish passage, while minimizing potential impacts to TDG.

2011 was the first year that TDG was measured with the fish ladder in operation. The "Dual Mode" operating schedule for the Main Dam Spillway was implemented, with minor modifications, in order to attract the greatest number of migrating adult fish as possible.

Some modifications to the schedule were made as an experiment to enhance hydraulic conditions for fish passage in the tailrace of the Main Dam Spillway. These experiments were conducted to determine which of the right bank bays should be opened first to attract migrating fish. The spillway opening schedule calls for Bays 4, 8, and 12 to be opened first, but this may not be the optimal pattern to attract fish to the fish ladder. These tests had little to no impact on TDG, as they were conducted during low flow periods.

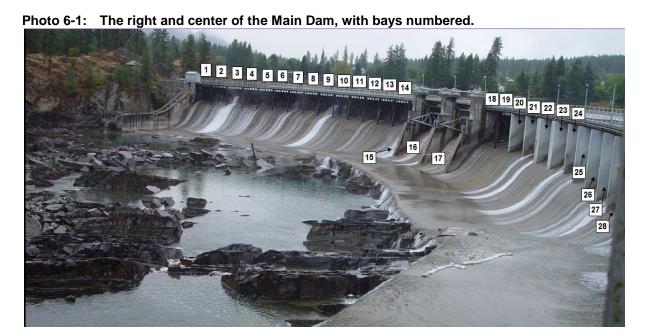
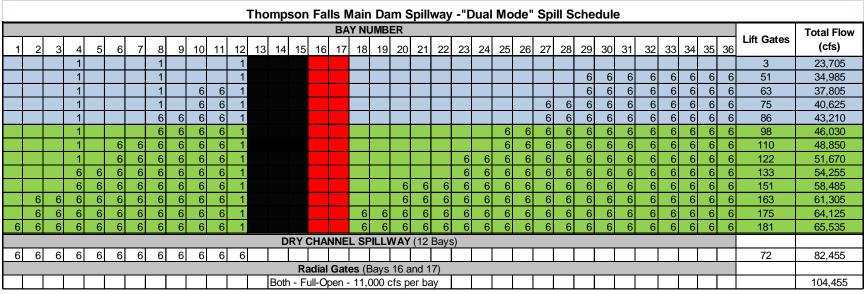
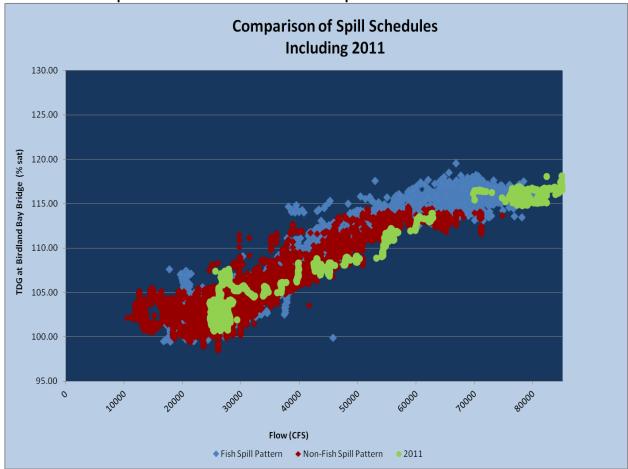




Photo 6-2: The left bank of the Main Dam at the Thompson Falls Project, with the spillway bays numbered.



Figure 6-5: Operational Plan for the Main Dam Spillway applied in 2011.




Notes:

- 1. Numbers under each bay represent the six lift gates in each spill bay
- 2. Each bay should have all six lift gates opened, before opening lift gates from another bay
- 3. Closing sequence is opposite of the opening sequence
- 4. Bays 13 through 15 should never be opened
- 5. Bays 16 and 17 are radial gates, to be operated in a pre-set manner by operations for forebay elevation control, and load rejection purposes

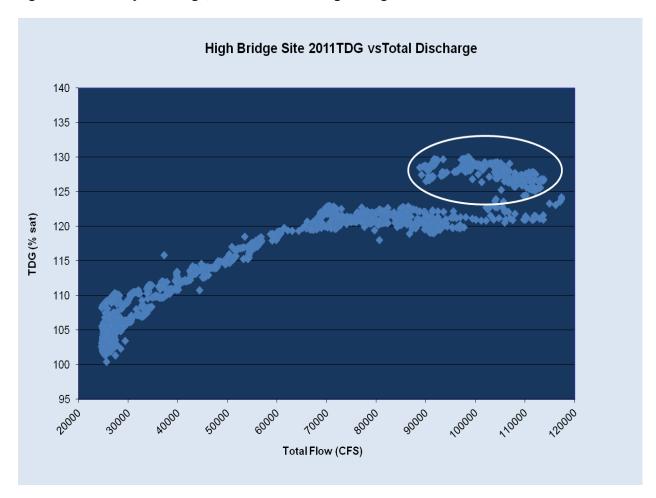

As shown on Figure 6-5 and Tables 6-2 and 6-3, TDG levels in 2011 compared favorably to past years TDG levels, when compared on a TDG per cfs level, up to 70,000 cfs total discharge. TDG levels at the Birdland Bay Bridge were as low, or lower, than the "non-fish" spillway operating schedule over a wide range of discharge. Therefore, operation of the spillway with the fish ladder in place, in a fish attraction operating mode, did not have a detrimental impact on TDG in the Clark Fork River downstream of the Thompson Falls Hydroelectric Project.

Figure 6-6: Total Dissolved Gas measurements up to 85,000 cfs at the Birdland Bay Bridge at varying levels of discharge in 2011, and in prior years when the Main Dam Spillway was operated on a "fish" and "non-fish" spill schedule.



An unusual pattern was detected in the TDG measurements at the highest level of river discharge at both the Birdland Bay Bridge and the High Bridge in 2011 (Figures 6-6 and 6-7). Generally, TDG increases with increasing discharge up to a point (of approximately 70,000 cfs), but discharge in excess of that level does not generate increased TDG. In 2011, that pattern was observed, except that some TDG measurements (show within the white or yellow circle) were noticeably higher than others at the same level of discharge. The reason for this anomaly cannot be determined with certainty; however there appears to have been a change in TDG after peak discharge occurred on June 9, 2011.

Figure 6-7: TDG by discharge, measured at the High Bridge on the Clark Fork River in 2011.



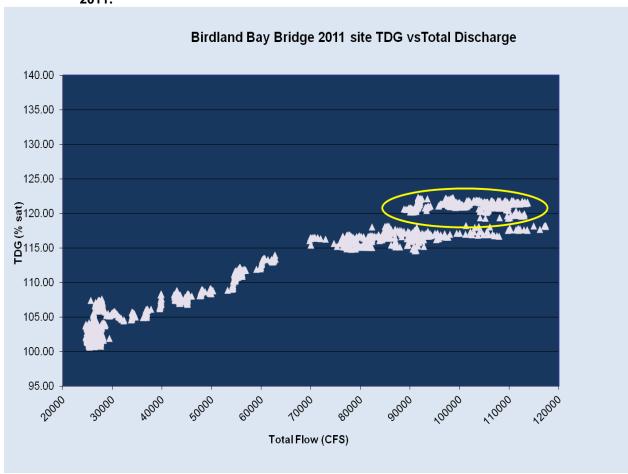



Figure 6-8: TDG by discharge, measured at the Birdland Bay Bridge on the Clark Fork River in 2011.

As shown in Table 6-4, the level of TDG was higher after June 9 than before June 9, even over the same range of discharge. On June 9, flow in the Clark Fork River at Thompson Falls Dam exceeded 110,000 cfs for the first time in the season. All spillway panels at both the Main Dam Spillway and the Dry Channel Spillway were open. Large amounts of debris were being carried by the high flows, including large debris such as whole trees. This debris was lodging on the spillway, causing hazardous conditions.

The spillways at the Thompson Falls Hydroelectric Project have removable panels that are 4-foot by 8-foot and can be lifted with a crane mounted on the spillway. These are used to pass routine amounts of spill during the runoff season. However, for exceptionally high discharges, the dam operators can trip the stanchions on the spillway and open an additional panel to pass high water. This is rarely done (roughly once every 10 years or less often), as it is generally unnecessary and requires drawing the reservoir down to crest in order to repair the stanchions and return the spillway to its typical operating configuration. However, as a result of extreme high flow and debris, the stanchions were tripped at several panels on the Main Dam and Dry Channel Spillways on June 9.

Table 6-4: Mean TDG Measured at the High Bridge over a range of flows, for the entire season, before June 9, and after June 9.

| <b>Total Flow</b> | 2011 all dates | Before June 9 | After June 9 |
|-------------------|----------------|---------------|--------------|
| <23               | N/A            | 0             | N/A          |
| >23 <30           | 104.8          | 104.4         | 109.4        |
| >30 <40           | 109.9          | 108.8         | 111.4        |
| >40 <50           | 113.7          | 112.9         | 114.0        |
| >50 <60           | 117.1          | 117.0         | 117.1        |
| >60<70            | 120.5          | 120.7         | 118.7        |
| >70 <80           | 121.3          | 121.3         | N/A          |
| >80 <90           | 121.6          | 121.4         | 128.3        |
| >90 <100          | 125.8          | 120.4         | 128.5        |
| >100 <110         | 127.1          | 121.9         | 127.8        |
| >110<120          | 125.2          | N/A           | 125.2        |

It appears that the tripping of the stanchions may have created a larger plunge of water over the spillway and resulted in increased TDG in the river downstream of the project site.

Figure 6-9: The Main Dam Spillway at Thompson Falls Hydroelectric Project. Note that two spillway panels have been removed. When the stanchions are tripped, the panels underneath are removed to allow additional water and debris to pass over the spillway.



#### 6.3 **GBT Monitoring**

Table 6-5 shows the results of the fish impact evaluation done in 2008, 2009, and 2011. No GBT sampling was done in 2010 due to the short duration of flows in excess of 50,000 cfs. In past years with lower river discharge and lower TDG, fish showing external symptoms of GBT were rare, with only one fish out of 496 fish examined (both 2008 and 2009 combined) showing external symptoms. In 2011, higher TDG resulted in a higher number of fish detected with external GBT symptoms. Of the 67 fish with symptoms, seven were noted to have bubbles and one rainbow trout was noted to have exophthalmia ('pop eye'). All the other external symptoms noted were minor.

**Table 6-5:** Number of fish evaluated for gas bubble trauma (GBT) and the number and types of fish observed to have symptoms of GBT.

| Year | # of Fish | # of<br>Species | # Fish with GBT Symptoms | Species with Symptoms          |
|------|-----------|-----------------|--------------------------|--------------------------------|
| 2008 | 220       | 16              | 1 (0.4%)                 | LWF                            |
| 2009 | 276       | 14              | 0                        |                                |
| 2011 | 949       | 15              | 67(7%)                   | RB, LWF, LSS, PUMP,<br>NPM, LL |

#### 6.4 Recommendations

The high levels of TDG noted in 2011 were a result of exceptionally high discharge in 2011. In addition, the operational need to trip the stanchions on the spillways seemed to have created a spike in TDG measurements.

However, operating the Main Dam Spillway to enhance fish migration to and through the fish ladder did not have a detrimental impact on TDG. Therefore, it is recommended that the Main Dam Spillway be operated in the same manner as in 2011.

Experiments should continue to find the best configuration of panel openings to attract fish to the fish ladder.

In the event of exceptionally high flows, operators should avoid tripping the stanchions if possible. However, dam safety considerations will be paramount in extreme high flow conditions.

# 7.0 TAC Funded Projects in 2011

#### 7.1 2011 TAC Funded Projects

Thompson Falls TAC funded one project in 2011 to support continued bull trout genetic testing of bull trout sampled in the Clark Fork River drainage. The genetic sampling and results would be used to further enhance and maintain the existing genetic database that is managed by Avista.

#### 7.1.1 Bull Trout Genetic Sampling

In 2011, PPL Montana allocated approximately \$5,582 to bull trout genetic analysis from samples collected in the Clark Fork River drainage to improve the genetic baseline database. Juvenile bull trout samples were taken in the Fishtrap Creek drainage in 2011 and sent to Abernathy Labs for analysis. Results from these samples will be available in spring 2012, and consequently will not be available until after the submittal of this report to the Commission. Therefore, results will be included in the 2012 Annual Report scheduled for submittal in April 2013.

# 8.0 Compliance with the Terms and Conditions of the Biological Opinion

The sections below provide the seven Terms and Conditions taken directly from FWS's Biological Opinion followed by a statement describing PPL Montana's actions of compliance.

## 8.1 Term and Condition TC1 – Upstream Passage:

#### 8.1.1 Requirement

The Biological Opinion states that:

- a. During 2009 and 2010, PPL Montana will construct a fish passage facility (permanent fishway) to provide timely and efficient upstream passage at the right abutment of the main dam, as agreed to by the Service and through oversight of the TAC (as provided for in the interagency Thompson Falls MOU).
- b. During construction and cleanup, PPL Montana will follow permit procedures as required by the Service, the State of Montana, and U.S. Army Corps of Engineers so that minimal impacts to downstream aquatic resources occur during construction.
- c. PPL Montana will determine operational procedures for the passage facility and develop a written operation and procedure manual (SOP) by the end of 2010, with input from the TAC and approval by the Service, updated as needed.
- d. For the remaining term of the license (expiring December 31, 2025), PPL Montana will ensure that operation of the fish passage facility is adequately funded and conducted in compliance with the approved SOP; including activities such as biological studies, transport of bull trout (as needed), and assessment of ladder efficiency.
- e. During the Phase 2 evaluation period (2010 through 2020), PPL Montana will provide adequate funding for genetic testing to determine the likely natal tributary of origin of all adult bull trout which ascend the fishway and enter the sample loop, as well as those otherwise captured at the base of Thompson Falls Hydroelectric Project. In order to positively identify natal origin of bull trout at the project, PPL Montana will institute a permanent fish tagging system for all bull trout handled during

monitoring and for other fisheries investigation activities in the Project area.

f. During the Phase 2 evaluation period (2010 through 2020), PPL Montana will make a fish transport vehicle available, and provide staff to transport any adult bull trout that is captured at Thompson Falls Hydroelectric Project and determined by the SOP to require transport to upstream waters.

g. In consultation with the TAC, PPL Montana will prepare by January 1, 2011, for Service approval, an action plan for Phase 2 of the evaluation period (2010 through 2020) to evaluate efficiency of the upstream passage facility. The goal will be to assess how effective the ladder is at passing bull trout, the potential length of any delay, the amount of fallback, and the optimal operational procedures to achieve the highest efficiency. During this Phase 2 evaluation period (2010 through 2020) a routine feedback loop will be established and used, as agreed to by the Service, to fine tune operations and will be combined with a variety of experimental and evaluative studies. It may be necessary to conduct research on surrogate species (e.g., rainbow trout) at the discretion of the TAC, in order to facilitate certain of these evaluations. At a minimum, for the remaining term of the license (through 2025), PPL Montana will support a sampling method to annually estimate the total numbers of all species passing through the ladder and adequately characterize the timing of such movements.

h. During the entire Phase 2 evaluation period (2010-2020), the TAC, subject to approval of the Service and with PPL Montana support, will provide adequate oversight of scientific aspects, surveys, studies, and protocols associated with the fish passage aspects of the Project. At the end of the Phase 2 evaluation period (2010-2020), and upon completion and adequate distribution and consideration of a comprehensive ten-year report (due December 31, 2020), PPL Montana will convene a structured scientific review of the project, guided by the TAC. This scientific review will be completed by April 1, 2021 and will develop a set of recommendations to be submitted to the Service for evaluation, modification, and approval; including specific conclusions as to whether the fishway is functioning as intended and whether major operational or structural modifications of the fishway are needed. The review process will culminate, by December 31, 2021, in a revised operating plan for the fishway during the remainder of the existing term of the FERC license (2022 through 2025).

#### 8.1.2 Compliance

PPL Montana has completed project activities in compliance with TC1 (a, b, c). PPL Montana obtained the necessary permits for construction of the ladder and completed construction of the Thompson Falls Upstream Fish Passage Facility by fall 2010 [TC 1 (a, b)]. The FERC-approved PPL Montana's Thompson Falls Fish Ladder - Fishway Operations Manual 1.0 (SOP) in an Order issued on June 17, 2011.

PPL Montana will continue to stay in compliance with TC 1 (d) for the term of the License. PPL Montana will continue funding for the upstream fish passage facility and operate the facility in conformance with the approved SOP.

PPL Montana developed and submitted the FWS approved the Fish Passage Evaluation Plan Phase 2 Action Plan (2011-2020) to the FERC on October 14, 2010. The FERC issued an Order approving the plan on June 9, 2011. In 2011, PPL Montana implemented the Fish Passage Evaluation Plan, which complies with TC 1 (e, f, g, and h). PPL Montana will continue to implementation of the Fish Passage Evaluation Plan through 2020.

#### 8.2 TC2 – Downstream Passage

#### 8.2.1 Requirement

The Biological Opinion states that:

PPL Montana will provide annual funding to the TAC, as approved by the Service and specified in the Thompson Falls MOU, to conduct offsite habitat restoration or acquisition in important upstream bull trout spawning and rearing tributaries. The purpose is to boost recruitment of juvenile bull trout. This funding is provided to partially mitigate for incidental take of bull trout caused by downstream passage through the turbines and spillways. The annual \$100,000 contribution specified for the first term of the MOU (2009-2013) is subject to renegotiation during succeeding terms of the MOU to run from 2014-2020.

#### 8.2.2 Compliance

In 2011 PPL Montana funded one project in support of maintaining and enhancing the bull trout genetic database for the lower Clark Fork River drainage. Details of the effort are provided in Section 9.5.1. At the annual Thompson Falls TAC meeting held on December 13, 2011, PPL Montana receive two proposals requesting funding for 2012. The TAC approved both projects and details of the proposals are provided in Section 9.5 of this report. PPL Montana will continue to collaborate and coordinate with agencies and other entities to support projects in compliance with TC2 (a).

## 8.3 TC3 – Gas Supersaturation

#### 8.3.1 Requirement

The Biological Opinion states that:

a. For the remainder of the license (through 2025), in consultation with the TAC and subject to Service approval, PPL Montana will develop and implement operational procedures to reduce or minimize the total dissolved gas production at Thompson Falls Dams during periods of spill. Future modifications to prescribed operations may be determined from ongoing evaluations, as necessary and determined appropriate by Montana Department of Environmental Quality.

b. For the remainder of the license (through 2025), in consultation with the TAC and subject to Service approval, PPL Montana will continue to collaborate with MDEQ, Avista, FWP, and other entities toward reducing the overall systemic gas supersaturation levels in the Clark Fork River, occurring from a point downstream of Thompson Falls Dam to below Albeni Falls Dam.

c. For the remainder of the license (through 2025), all bull trout detained through the sampling loop at the Thompson Falls Fish Ladder will routinely be examined for signs of gas bubble trauma; with results of such observations permanently recorded. Should GBT symptoms be discovered, then PPL Montana will consult the TAC on the need for immediate corrective actions and subsequently implement any new studies or potential operational changes (to the ladder or the dam) which may be required by the Service and DEQ, in order to mitigate GBT concerns.

## 8.3.2 Compliance

PPL Montana prepared a Total Dissolved Gas (TDG) Control Plan in collaboration with the TAC in October 2010, and submitted that plan to the Montana Department of Environmental Quality. The TDG Plan recommends continued monitoring of TDG at the Thompson Falls Hydroelectric Project, and also recommends a spillway operating plan for the Main Dam Spillway. In 2011, the TDG Plan was implemented, and the results are reported in this document.

PPL Montana will continue to collaborate with MDEQ, Avista, FWP, and other entities toward reducing the overall systemic gas supersaturation levels in the Clark Fork River.

In addition, PPL Montana monitors potential impacts of TDG of fish annually. The results of the 2011 gas bubble trauma studies are reported in this document. In 2011, no bull trout showed external symptoms of GBT, either in the fish ladder or in the river downstream of the Thompson Falls Hydroelectric Project.

#### TC4 – MOU and TAC: 8.4

#### 8.4.1 Requirement

The Biological Opinion states that:

a. Upon completion of construction of the Thompson Falls Fish Ladder (currently scheduled for 2010) and concurrent with initiation of the Phase 2 review period (mid-2010 through 2020) PPL Montana will review the Thompson Falls MOU and collaborate with the signatory agencies as to the need to revise and restructure the MOU. Any such revision should be developed around the 2010-2020 Phase 2 evaluation period and may include appropriate changes to the TAC and its operation. Subsequent revision may occur again in 2021, or as needed based on adaptive principles and subject to approval of the Service and PPL Montana.

#### 8.4.2 Compliance

The current MOU expires on December 31, 2013. PPL Montana will coordinate with the TAC and FWS to revisit the terms of the MOU in 2012.

#### 8.5 TC5 – Thompson Falls Reservoir

#### 8.5.1 Requirement

The Biological Opinion states that:

a. During the first five years of the Phase 2 evaluation (2010 through 2015) PPL Montana, with TAC involvement and Service approval, will conduct a prioritized 5-year evaluation of factors contributing to the potential loss or enhancement of migratory bull trout passage through Thompson Falls Reservoir. Goals and objectives for this assessment and scientifically-based methodology will be developed through the TAC and approved by the Service no later than the end of 2010 and will focus at a minimum on better understanding temperature and water current gradients through the reservoir; travel time, residence time, and pathways that juvenile and subadult bull trout select in moving through the reservoir; and an assessment of impacts of predatory nonnative fish species on juvenile and subadult bull trout residing in or passing through the reservoir. The initial findings will be summarized and supported with scientifically based conclusions, no later than the end of 2015, with a goal of adaptively improving survival of juvenile bull trout in Thompson Falls Reservoir as they pass downstream or reside in the system. A second, more comprehensive summary of conclusions and recommendations regarding

reservoir impacts will be submitted as part of the scientific review package by the end of 2020 (see TC1h).

b. Based on the interim Thompson Falls Reservoir Assessment (a., above), a timely evaluation of the site specific need for a nonnative species control program in Thompson Falls Reservoir will be conducted by PPL Montana, in collaboration with the TAC agencies (see TC7b., below), no later than the end of 2015, with final recommendations to be approved by the Service.

#### 8.5.2 Compliance

In compliance with TC 5 (a), PPL Montana collaborated with TAC members and prepared the 5-Year Reservoir Monitoring Plan, which was approved by FWS and submitted to FERC on June 17, 2010. FERC issued an Order approving the plan on February 9, 2011. PPL Montana will continue the implementation of the monitoring plan in 2012. Following the 5-year reservoir assessment (2011-2015), PPL Montana will complete an evaluation of the site specific need for a nonnative species control program in the Thompson Falls Reservoir in compliance with TC 5 (b). This evaluation will be completed by December 31, 2015.

#### 8.6 TC6 – Systemwide Monitoring:

#### 8.6.1 Requirement

The Biological Opinion states that:

- a. For the remainder of the license (through 2025), PPL Montana will ensure that actions at the Thompson Falls Fish Ladder, including tagging, transport, and any tracking of fish movement, are adequately funded and fully coordinated with the Avista project and the management agencies FWP, CSKT, and the Service. This coordination will include routine communications through the TAC and may require participation in special meetings or discussions to ensure that there is a single seamless fish passage effort for the lower Clark Fork projects.
- b. For the remainder of the license (through 2025) PPL Montana will contribute a proportional amount of funding to ensure that fish sampled at the Thompson Falls Fish Passage Facility are processed, analyzed, and integrated into annual updates of the systemwide Clark Fork River genetic database.
- c. In consultation with the TAC and with approval of the Service, for the remainder of the license (through 2025), PPL Montana will fund the technology required to track transmittered fish that pass the project as they move through the system. This may include an integrated PIT-Tag scanner

at the fishway, mobile PIT-Tag scanning capabilities (wand(s) for use in the field), and radio implantation and tracking of bull trout that move through the sample loop in the ladder. Obligations for tracking transmittered fish by PPL Montana will include at a minimum the portions of the Lower Clark Fork Core Area upstream of Thompson Falls Dam (i.e., mainstem Clark Fork River from Thompson Falls Dam to the confluence of the Flathead River, including tributaries such as the Thompson River) Note: in the lower Flathead River, Jocko River, and other Flathead Reservation waters primary responsibility for tracking is assumed by the CSKT, but close coordination with the Tribes will be maintained by PPL Montana. Broader tracking needs upstream will be determined through cooperation with other entities in the basin (as in TC6a., above).

#### 8.6.2 Compliance

PPL Montana will comply with these requirements by holding necessary TAC meetings (and sub-committee meetings) in 2012 to ensure compliance and to aggressively address the adaptive needs of the operations of the fish ladder. PPL Montana's proposal to continue bull trout genetic sampling efforts in the Clark Fork River drainage in 2012 as approved and funded by the TAC during the annual TAC meeting held on December 13, 2011. PPL Montana has completed the construction of the fish ladder, which includes three antennas installed on the weirs. These antennas detect PIT tags as fish move through the ladder. PPL Montana will also continue to collaborate and coordinate with local biologists in support of ongoing and future radio telemetry studies.

# 8.7 TC7 - Reporting

#### 8.7.1 Requirement

The Biological Opinion states that:

- a. Annually, by April 1 of each year for the remainder of the license (expires 2025), PPL Montana will prepare and submit to the Service for approval a report of the previous years activities, fish passage totals, and next year's proposed activities and other fisheries monitoring that may result in intentional as well as incidental take of bull trout. The report will quantify the number of bull trout proposed to be incidentally taken by each activity and summarize the cumulative extent of incidental take from all previous year activities.
- b. By December 31, 2015, after the first five years of the Phase 2 evaluation period (as described per TC1g., above), PPL Montana will present to the TAC and the Service a comprehensive written assessment of

the first five years of fishway operation. This report is partially for the purpose of assessing the need for major mid-Phase 2 modifications to the facility and its operations as well as for consideration of the need for supporting additional bull trout passage or transport above the dam.

- c. Annually, by April 1 of each year beginning in 2010 and for the remainder of the license (expires 2025), PPL Montana will archive electronic versions of all biological progress reports (described in TC 1 through TC 7 and dating back to 2005) generated through the Thompson Falls Project. PPL Montana will provide to TAC agencies at no cost, upon request, updated CDs or web-based access to those reports.
- d. For the remainder of the license (expires 2025), upon locating dead, injured, or sick bull trout, or upon observing destruction of redds, notification must be made within 24 hours to the Service's Division of Law Enforcement Special Agent (Richard Branzell, P.O. Box 7488, Missoula, MT, 59807-7488; (406) 329-3000). Instructions for proper handling and disposition of such specimens will be issued by the Division of Law Enforcement. Dead, injured, or sick bull trout should also be reported to the Service's Kalispell Field Office (406-758-6882).
- e. For the remainder of the license (expires 2025), during project implementation the FERC or applicant shall promptly notify the Service of any emergency or unanticipated situations arising that may be detrimental for bull trout relative to the proposed activity.

#### 8.7.2 Compliance

PPL Montana complied with these requirements by preparing this annual report for the work completed in 2011. PPL Montana will continue to submit annual reports of the previous year's activities, fish passage totals, and next year's proposed activities and other fisheries monitoring. The annual reports will be approved by the TAC and submitted to FERC by April 1 of each year for the remainder of the License.

In 2011, PPL Montana collected a total of five bull trout, all of which were released live. Three bull trout were collected via electrofishing downstream of the Thompson Falls Hydroelectric Project on May 31, 2011. The three bull trout were released live after measurements of length and weight were recorded, a genetic sample was taken, and a PIT tag was implanted. The three bull trout measured 180 millimeters (mm) and 50 grams (g); 247 mm and 130 g; and 482 mm and 966 g, respectively. Genetic samples indicate these fish originated from natal streams in Region 4.

In 2011, two bull trout ascended the Thompson Falls fish ladder (the first bull trout ascended the entire ladder and the second bull trout was caught in a lower ladder pool during an operation

change in weir mode) and were released live upstream in the Thompson Falls Reservoir after measurements of length and weight were recorded, a genetic sample was taken, and a PIT tag implanted (*see* Section 3.2.3 for details). Lengths and weights of the bull trout were 365 mm and 364 g; and 547 mm and 1,438 g, respectively. Both fish were genetically assigned to Region 4. Additional details of the five bull trout collected in 2011 are provided in Table 8-1.

With the start of ladder operations in 2011, PPL Montana proposes to provide the following information in future annual reports. PPL Montana will summarize annual activities associated with the evaluation of the fish ladder and include a summary report in the annual report submitted to FERC by April 1 each year. The annual summary will include, as available, the following information:

- Total number of fish and species ascending the ladder
- Total number of fish and species passed to Thompson Falls Reservoir
- Most active period(s) for fish and various species ascending the ladder
- Results from the weir versus orifice study and attraction flow studies
- Total number of fallback
- Bull trout genetic sampling and tributary assignment

In addition PPL Montana will archive electronic versions of all biological progress reports (dating back to 2005) annually by April 1.

Sections b, d, and e will be addressed as these situations occur.

Table 8-1: Cumulative incidental "take" of bull trout for the Thompson Falls Project, since January 1, 2009. Note: EF = electrofishing.

| Date           | Method<br>of<br>Capture | Drainage              | Location                                                 | Action                                | Length/Area of Sampling Section | Personnel    | Length<br>(mm) | Weight<br>(g) | PIT tag         | Genetic<br>Assignment  | Condition at time of release |
|----------------|-------------------------|-----------------------|----------------------------------------------------------|---------------------------------------|---------------------------------|--------------|----------------|---------------|-----------------|------------------------|------------------------------|
| 5/1/2009       | Gillnet                 | Clark Fork<br>(Lower) | TFalls<br>Reservoir                                      | Long-term<br>Population<br>Monitoring | Reservoir<br>Wide               | Mabbott/PPLM | 271            | 174           | 98512009494278  | Fishtrap Ck            | Alive                        |
| 10/12/201<br>0 | EF                      | Clark Fork<br>(Lower) | Clark Fork<br>River,<br>upstream<br>of Island<br>Complex | Long-term<br>Population<br>Monitoring | 3 miles                         | Mabbott/PPLM | 325            | 240           | N/A             | Awaiting lab results   | Alive                        |
| 4/13/2011      | TFalls<br>Ladder        | Clark Fork<br>(Lower) | TFalls<br>Ladder                                         | Fish<br>Passage<br>Studies            |                                 | PPLM/FWP     | 365            | 364           | 95121023302169  | Thompson<br>River (R4) | Alive                        |
| 4/26/2011      | TFalls<br>Ladder        | Clark Fork<br>(Lower) | TFalls<br>Ladder                                         | Fish<br>Passage<br>Studies            |                                 | PPLM/FWP     | 547            | 1438          | 985121023464730 | Fishtrap<br>Creek (R4) | Alive                        |
| 5/31/2011      | EF                      | Clark Fork<br>(Lower) | Below<br>TFalls<br>Ladder                                | Fish<br>Passage<br>Studies            |                                 | PPLM/FWP     | 482            | 966           | 985121021877906 | Meadow<br>Creek (R4)   | Alive                        |
| 5/31/2011      | EF                      | Clark Fork<br>(Lower) | Below<br>TFalls<br>Ladder                                | Fish<br>Passage<br>Studies            |                                 | PPLM/FWP     | 180            | 50            | 985121021907887 | Fishtrap<br>Creek (R4) | Alive                        |
| 5/31/2011      | EF                      | Clark Fork<br>(Lower) | Below<br>TFalls<br>Ladder                                | Fish<br>Passage<br>Studies            |                                 | PPLM/FWP     | 247            | 130           | 985121021914545 | Fishtrap<br>Creek (R4) | Alive                        |

# 9.0 Proposed Activities for 2012

#### 9.1 Baseline Fisheries Data Collection

In 2012, PPL Montana will continue to collect baseline fisheries data as presented in Section 2.0 of this report, unless otherwise directed by the TAC and FWS. Baseline fisheries data will include spring and fall electrofishing and fall gillnetting at the designated site shown in Figures 3-1 and 3-2. Data collected in 2012 will be summarized and presented in next year's annual report. Based on prior year's sampling in the Clark Fork River and Thompson Falls Reservoir it is conservatively estimated that incidental take of bull trout during 2012 baseline fisheries studies will be no more than five bull trout.

## 9.2 Upstream Adult Fish Passage Studies

In 2012, PPL Montana will continue to implement the 10-year (2011-2020) Fish Passage Evaluation Plan that was developed and submitted to FERC on October 18, 2010 and approved on June 9, 2011. PPL Montana will collect biological and operational data during ladder operations in 2012. PPL Montana will summarize the following information, as available, for next year's annual report:

- Total number of fish and species ascending the ladder.
- Total number of fish and species passed to Thompson Falls Reservoir.
- Most active period(s) for fish and various species ascending the ladder.
- Results from the weir versus orifice study and attraction flow studies.
- Number of bull trout which fallback after passing the dam.
- Bull trout genetic sampling and tributary assignment.

Several studies outlined in the Fish Passage Evaluation Plan will occur over multiple years. PPL Montana will provide a status report for the multi-year studies in next year's annual report and a comprehensive report following the completion of each study. A list of the studies and their respective schedule is provided in Table 9-1. The following text summarizes the study objectives and methods that are outlined in the Fish Passage Evaluation Plan.

Table 9-1: Summary of the objectives, studies, and reporting requirements for the Fish Passage Evaluation Plan 2011-2020. Annual activities are indicated by an "x." A dash (-) indicates no action will be taken for the year. TBD represents "to be determined." (Table was taken from the *Fish Passage Evaluation Plan*, 2010)

| Objective                     | Study                                                       | 2011                      | 2012                      | 2013                                             | 2014                                          | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
|-------------------------------|-------------------------------------------------------------|---------------------------|---------------------------|--------------------------------------------------|-----------------------------------------------|------|------|------|------|------|------|
|                               | Annual Fish Passage                                         | Х                         | Х                         | х                                                | х                                             | Х    | х    | Х    | Х    | Х    | Х    |
| Effectiveness of the Ladder   | Annual Movement Patterns (timing)                           | х                         | х                         | х                                                | х                                             | х    | х    | Х    | Х    | Х    | х    |
|                               | Bull Trout Genetic Testing                                  | Х                         | х                         | х                                                | х                                             | Х    | х    | Х    | Х    | Х    | х    |
| Operational<br>Procedures for | Weir Modes<br>V-notch vs. Orifice                           | х                         | х                         | Determine if<br>additional<br>study is<br>needed | TBD                                           | TBD  | TBD  | TBD  | TBD  | TBD  | TBD  |
| Effectiveness                 | Attractant Flow & Radio Telemetry                           | x (no radio<br>telemetry) | x (no radio<br>telemetry) | х                                                | Re-evaluation,<br>Design 4-year<br>Study Plan | х    | х    | х    | TBD  | TBD  | TBD  |
| Length of<br>Delay            | Upstream Movement<br>Patterns, Timing &<br>Behavior (Delay) | х                         | х                         | х                                                | х                                             | х    | Х    | х    | х    | х    | х    |
| Fallback                      | Fallback                                                    | Х                         | х                         | х                                                | х                                             | Х    | х    | Х    | Х    | Х    | х    |
|                               | Annual Reporting<br>(April 1 – FERC Submittal)              | Х                         | х                         | х                                                | х                                             | х    | х    | Х    | Х    | Х    | х    |
| Reporting<br>Requirements     | 5-year Report<br>(Dec 31, 2015 – TAC/FWS<br>Submittal)      | -                         | -                         | ,                                                | -                                             | х    | -    | -    | 1    | -    | -    |
|                               | 10-year Report<br>(Dec 31, 2020 – TAC/FWS<br>Submittal)     | -                         | -                         | -                                                | -                                             | -    | -    | -    | -    | -    | х    |

Biological and operational data will be used to assess between 2011 and 2020 the following:

- Effectiveness of the ladder to pass fish upstream
- Effectiveness of operation procedures
- Fish movement patterns, timing, and behavior
- Fallback

Based on prior year's sampling in the Thompson Falls tailrace it is conservatively estimated that incidental take of bull trout during 2012 upstream adult fish passage studies will be no more than 10 bull trout.

#### 9.2.1 Effectiveness of the Ladder and Operations

Effectiveness of the ladder will be evaluated based on annual fish passage. The biological data collected at the ladder's work station will be used to summarize overall upstream fish passage, including enumeration of fish using the facility; the species using the facility; range, average size, and weight of species using the facility; and the timing of movement and passage by each species.

The fish ladder was designed to operate with flows up to 48,000 cfs, but in 2011 was successful at capturing fish when total Clark Fork River discharge was approximately 75,000 cfs. In 2012, PPL Montana will continue to test the range of streamflow over which the fish ladder can collect migrating adult fish. The ladder will be operated during the spill season for as long as operationally practicable, and data collected on fish movements into the ladder through this range of flow.

Effectiveness of the operational procedures of the ladder to pass fish upstream will be evaluated based on two multi-year studies, including an evaluation of weir versus orifice and optimal attractant flow. The weir versus orifice study commenced in 2011 and will continue through 2012. As done in 2011, PPL Montana proposes to alternate from weir to orifice mode on a weekly basis in 2012, if feasible. Alternating modes on a weekly basis will remove potential seasonal biases in the passage data. Data collection will include the time needed for fish to ascend the ladder, as well as the standard biological and fish operational data. The data analysis will focus on comparing fish passage results for weir versus orifice. The analysis will evaluate the potential difference in overall number of fish passed, fish species, size of fish, and time required for fish to ascend the ladder. After the first two years of data collection, PPL Montana will analyze the data to identify potential design modifications for 2013.

The attractant flow study began in 2011 and is scheduled to continue through 2017. PPL Montana proposes to use the first 3 years of ladder operations (2011, 2012, 2013) to test variable attraction flows and learn operations. The flexibility to experiment with attractant flows in the first 3 years will help operators and biologists develop a more systematic approach and study design for implementation in 2014. For the duration of the study (2011-2017), PPL Montana will focus on the following questions to evaluate the affects of attractant flow on fish movement:

- Under what range of discharges do fish move upstream through the narrow (falls) section of river to the tailrace?
- How long does it take fish to migrate past the falls to the tailrace?
- How long does it take fish to locate the ladder entrance once they are in the tailrace?
- What combination of attraction flows is most effective for fish to find the ladder entrance at varying levels of spill?

#### 9.2.2 Evaluation of Fish Movement Patterns, Timing, and Behavior

Fish movement patterns, timing, and behavior will be evaluated through biological data collected at the fish ladder and radio telemetry data, if available. Bull trout captured downstream of Avista's Cabinet Gorge and Noxon Rapids dams that are genetically tested and assigned to Region 4 (upstream of Thompson Falls Hydroelectric Project) will be PIT tagged (but will not be radio tagged) in 2012. PPL Montana will coordinate with Avista to have the Region 4 bull trout released in the Noxon Reservoir near Vermilion Bay (starting in 2011), when conditions permit. PPL Montana will use data collected to assess movement patterns and timing to the extent possible. The assessment will also evaluate the:

- Length of time for bull trout to migrate from Noxon Reservoir to Thompson Falls Main Dam tailrace.
- Length of time for bull trout to migrate from Thompson Falls Main Dam tailrace to ladder.
- Length of time for bull trout to ascend ladder (entrance to top).
- Upstream migration timing.
- Migration behavior and pattern once released upstream of Thompson Falls Dam.

#### 9.2.3 Evaluation of Fallback

The potential fallback of bull trout after ascending the ladder and moving into the Thompson Falls Reservoir will be evaluated on an annual basis. Bull trout will be monitored for fallback via PIT tag and in some cases, radio telemetry. Other salmonids that are radio tagged for previously described studies will also be monitored for fallback after ascending the ladder and being passed into the Thompson Falls Reservoir. When feasible, non-salmonids that have ascended the ladder will receive a VIE tag behind the left eye. The VIE tag will be color-coded by year. The VIE tag will be used to evaluate fallback of non-salmonids.

# 9.3 Thompson River Drainage Studies (5-Year Reservoir Plan)

In 2012, PPL Montana will continue to implement the 5-Year Reservoir Monitoring Plan (2011-2015) that was submitted to FERC in June 2010 and approved by FERC in an Order issued on February 9, 2011. The goal of the plan is to gather information that will assist in developing recommendations to maximize survival of outmigrant juvenile and adult bull trout through Thompson Falls Reservoir and Dam. Efforts to implement this plan will extend over the next 5-

years. Each year PPL Montana will prepare a status report for the annual report. Following the completion of the 5-year monitoring plan, PPL Montana will compile, analyze, and summarize data collected and submit a comprehensive report to FWS by December 31, 2015.

Reservoir monitoring efforts will focus on two key objectives:

- 1. Characterization of bull trout in the Thompson River drainage.
- 2. Characterization of the affect that Thompson Falls Reservoir has on bull trout emigrating from the Thompson River drainage (or elsewhere upstream, as these are not necessarily separable) and migrating downstream in the Clark Fork River.

The first objective will be to characterize the present bull trout population in the Thompson River drainage. PPL Montana will coordinate with the TAC and FWS to review available historic data, available literature, identify data gaps, and develop an annual work/study plan for data collection in the Thompson River drainage. After data gaps are identified, PPL Montana will coordinate with the TAC and FWS to develop annual work plans for data collection in the Thompson River drainage.

The second objective will be to characterize the influences that the Thompson Falls Reservoir may have on emigrating bull trout. Through continued consultation with the TAC and FWS, PPL Montana has generated a list of tasks to address the second objective that is outlined in the 5-Year Reservoir Monitoring Plan (2011-2015). Because the Thompson River bull trout local population is the one most likely to be negatively affected by the dam and reservoir (proximity), it is that population which will be emphasized and evaluated, but in the process of doing so PPL Montana anticipates learning more about potential migrants from and to other local populations further upstream in the Clark Fork River that may share the Thompson Falls Reservoir habitat. At this time, there is nothing to suggest that differential impacts would occur to other populations, but if PPL Montana and the TAC determine otherwise, adjustments can be made to future monitoring efforts.

Incidental take of bull trout associated with fish evaluations in the Thompson River drainage will be reported by FWP.

# 9.4 TDG Control Plan and GBT Monitoring

#### 9.4.1 TDG Control Plan

PPL Montana prepared and submitted the *Total Dissolved Gas Control Plan* to MDEQ in 2010. In this plan PPL Montana proposes to continue to collaborate with MDEQ, Avista, FWP, and other entities with a long-term goal of reducing the overall systemic gas supersaturation levels in the Clark Fork River, occurring from a point downstream of Thompson Falls Hydroelectric Project to below Albeni Falls Dam. In the short term, PPL Montana proposes to continue experimentation with the spillway operating schedule with a goal of finding a feasible spillway operating plan, which minimizes TDG without impeding fish passage.

Future modifications to operation procedures will be developed through ongoing monitoring and experimentation as determine through consultation with the TAC and approval by MDEQ.

The following text outlining the operating plan in 2012 for monitoring TDG was taken from the 2010 *Total Dissolved Gas Control Plan*.

PPL Montana's plan, pending operational practicalities, will be to work toward a dual mode of spill control. Between 23,000 cfs and 45,000 cfs, the priority will be fish attraction to ladder. The "fish" spill schedule will be implemented and refined for the fish ladder. A new mode - TDG abatement will be implemented at discharge in excess of 45,000 cfs. The best possible TDG abatement scheme will be determined through experimentation. However, initially PPL Montana will use the "non-fish" spillway operating plan.

Specifically, the spillway panels will be opened in this order:

- 1. Remove three slide panels for fish attractant. The specific panels to be opened will be determined based on visual observations of the best hydraulic conditions to attract fish to the fish ladder entrance.
- 2. Pull out eight bays of slide panels, Bays: 29-36, on the far side of the Main Dam
- 3. Pull out two bays of slide panels, Bays: 10 and 11
- 4. Pull out two bays of slide panels, Bays: 27 and 28
- 5. Pull out two bays of slide panels, Bays: 8 and 9
- 6. Pull out two bays of slide panels, Bays: 25 and 26
- 7. Pull out two bays of slide panels, Bays: 6 and 7
- 8. Pull out two bays of slide panels, Bays: 23 and 24
- 9. Pull out two bays of slide panels, Bays: 4 and 5
- 10. Pull out three bays of slide panels, Bays: 20, 21, and 22
- 11. Pull out two bays of slide panels, Bays: 2 and 3
- 12. Pull out two bays of slide panels, Bays: 18 and 19
- 13. Pull out the last remaining bay of slide panels, Bay: 1

Next, start to pull the Dry Channel Dam.

As changing conditions like weather, runoff and operational/maintenance demands pose different concerns, changes in this schedule may occur.

This schedule is based on the assumption that once a panel is opened, it will not be closed again unless discharge is declining.

The operational mode will switch back to fish attraction when flows recede to allow fish to use ladder.

During radio telemetry studies of fish behavior at the Main Dam, fish left the Main Dam tailrace when discharge exceeded 40,000 cfs. Therefore, PPL Montana does not anticipate that making TDG abatement a priority during the spring freshet, when discharge exceeds 45,000 cfs, will have a significant impact on the efficiency of the fish ladder. However, experiments will continue in coming years to confirm this.

PPL Montana will prepare a report summarizing results from the 2012 TDG monitoring and the proposed spillway operation plan for 2013 in next year's annual report.

### 9.4.2 GBT Monitoring

GBT monitoring in fish downstream of Thompson Falls Hydroelectric Project will also continue in 2012 assuming flows reach 50,000 cfs. When river flows downstream of Thompson Falls Hydroelectric Project reach or exceed 50,000 cfs, PPL Montana will sample fish and examine fish for signs of external GBT. In addition, fish collected in the fish ladder during high flows (when discharge exceeds 50,000 cfs) will be examined for external symptoms of GBT. The data collected in 2012 will be summarized and presented in the 2012 Annual Report.

# 9.5 TAC Proposals for 2012 Funding

During the annual Thompson Falls TAC meeting, two proposals were submitted requesting 2012 funding. The first proposal was submitted by PPL Montana for the continued funding of genetics analysis of bull trout samples in the Clark Fork River drainage. The second proposal was submitted by the Five Valley Land Trust requesting funds to assist in the purchase of property in the Fish Creek drainage, an important stream corridor to bull trout spawning grounds.

### 9.5.1 Bull Trout Genetic Monitoring

**Project Title:** Bull Trout Genetic Monitoring

Proposal Submitted by: Brent Mabbott, PPL Montana

**Location of Proposed Project:** Funding may be used with cost-share opportunities and with the TAC's approval. Funding boundaries are the Clark Fork River and tributaries, upstream of Thompson Falls Dam. Sampling areas may extend from Thompson Falls Dam upstream to Pottlespeke Creek (near Misseyle), but evaludes the Flethead River drainage.

Rattlesnake Creek (near Missoula), but excludes the Flathead River drainage.

Total Project Cost: Unknown

TAC Funds (Cost-Share) Requested: \$10,000

#### **I. Introduction**

DNA data is needed to continue or update bull trout mapping in the Clark Fork River. This funding will be used to generate or update that bull trout DNA data where needed within the boundaries noted above.

#### **II.** Objectives

The objective of this project is to provide funding to enable or update genetic analysis for bull trout populations in the Clark Fork River drainage above Thompson Falls Dam.

#### III. Methods

Bull trout tissue samples will be collected from 30 to 50 fish for each donor population to determine whether they are genetically pure and to determine genetic mapping for each Clark Fork tributary.

#### IV. Schedule

Funding will be for approved TAC work in 2012.

#### V. Personnel

Principle investigators will be identified with each proposal for genetic funding.

#### VI. Budget

\$10,000

FWP and Avista may be asked to cost share, to be determinate based on sampling location.

#### VII. Deliverables

A detailed analysis/summery report submitted to the TAC for its next annual report.

#### **VIII. Cultural Resources**

There will be no ground disturbing actions associated with this activity.

**TAC VOTE:** TAC voted to keep the \$10,000 available for genetic sampling in 2012.

#### 9.5.2 Five Valley Land Trust Proposal

**Project Title:** Main Stem Fish Creek Land Acquisition – Phase I

**Proposal Submitted by:** Five Valleys Land Trust (Applicant) – Pelah Hoyt;

Montana Fish, Wildlife & Parks – Ladd Knotek

**Location of Proposed Project:** Properties located on main stem of Fish Creek, just downstream of confluence of South and West Forks (*see* attached maps).

Legal: T14N, R24W, Section 31, NW1/4 (148 acre Hulme Property – Phase I)

T14N, R25W, Section 36, NE1/4 (80 acre Babcock Property – Phase II)

Total Project Cost: \$230,600\* – Phase I

<sup>\*</sup> Does not include in-kind staff costs of Five Valleys and FWP

<sup>\*</sup> See expanded budget sheet for itemized summary of costs in both phases

#### TAC Funds (Cost-Share) Requested: \$115,300

**I. Introduction.** A brief statement of project to be implemented with pertinent background information.

Fish Creek is the most intact tributary watershed in the middle Clark Fork region and is considered the most valuable stronghold for bull trout and other native fish. The upper drainage is primarily comprised of public lands, most of which are roadless, proposed Wilderness managed by the U.S. Forest Service. Lower elevation tributaries and main stem tracts have traditionally been in mixed ownership, including private corporate timberlands (Plum Creek Timber Company), public lands (DNRC School Trust), and a limited number of small, private inholdings.

In 2010, Montana Fish, Wildlife & Parks (FWP) acquired ~ 28,000 acres of the lower Fish Creek drainage from The Nature Conservancy to form the Fish Creek Wildlife Management Area (WMA) and State Park. These lands represented a portion of the Montana Legacy Project, where The Nature Conservancy purchased all available Plum Creek Timber Company (PCT) holdings within the drainage to conserve fish & wildlife values.

At the time of purchase, several small PCT tracts (inholdings) along the main stem of Fish Creek were on the open market and were not included in the FWP lands acquisition. These properties were subsequently sold to private buyers. Two of these parcels (80 & 148 acres), which lie side-by-side on the lower main stem of Fish Creek, are now being advertised for sale. These parcels contain ~ 40 acres of riparian area and more than 4,000 feet of Fish Creek channel on a portion of the key migratory corridor and sub-adult rearing area for fluvial bull trout in Fish Creek. The properties currently contain no man-made structures or infrastructure.

The two properties proposed for acquisition have high development potential, particularly along riparian areas on the north side of Fish Creek. Land management activities on similar in-holdings within the WMA indicate that private ownership carries large risk of further subdivision, riparian and channel encroachment, illegal water withdrawal, and general habitat degradation. Less stringent subdivision regulations in Mineral County also make incorporation of natural resource protection and mitigation measures difficult.

The project would permanently protect a significant reach of the main stem of Fish Creek from habitat degradation and facilitate future enhancement activities. This stream system supports the largest fluvial bull trout population in the middle Clark Fork River drainage and typically contains more redds than the rest of the tributaries in this region combined. An intact migratory corridor and rearing area in the main stem is vital to this bull trout population.

**II. Objectives.** Acquire key inholding properties on Fish Creek within the Fish Creek WMA in order to protect them from subdivision and development in perpetuity. Properties would be converted to public ownership through incorporation into the WMA. Longer term objectives are to protect and improve habitat conditions for bull trout and other aquatic species using this corridor.

This application proposes purchase of the first of two adjacent properties totaling 228 acres. The first property is currently owned by the Hulme family and includes 148 acres of bare ground (*see* site map).

#### **III. Methods.** Description of how the objectives will be accomplished.

Five Valleys Land Trust (Five Valleys) would purchase the Fork-Hulme and Forks-Babcock inholdings on the main stem of Fish Creek and then donate the properties to FWP. The project would be divided into two phases with Phase I involving purchase of the 148-acre parcel owned by the Hulme family and Phase II involving the purchase of the adjacent 80-acre property owned by the Babcock family.

# **IV. Schedule.** When the project work will begin and end. Include seasonal variations in work schedule.

Five Valleys would negotiate an option agreement with the owners of the Forks-Hulme property in the early months of 2012. Once all necessary due diligence and public review and approval are in place the property would be purchased by Five Valleys using bridge-funding. It would be transferred to FWP as soon as possible thereafter. The purchase by Five Valleys and transfer to FWP would take place in the spring or early summer of 2012. Five Valleys requests that funds be dispersed upon transfer of the property to FWP.

If Phase I of the land acquisition is completed successfully, the Phase II effort would begin in the fall of 2012.

**V. Personnel.** Who will do the work. Identify the project leader or principal investigator. Pelah Hoyt, Five Valleys' Conservation Project Manager, will manage this project and transaction. Once the land is purchased by Five Valleys, it would be donated to FWP for inclusion in the Fish Creek WMA. The WMA is managed by Region 2 of FWP under the direction of Mike Thompson (Regional Wildlife Manager) and Mack Long (Regional Supervisor).

**VI. Budget.** The following table shows the budget for Phase I of the Main Stem Fish Creek Land Acquisition:

| Main Stem Fish Creek Land Acquisition Phase I Budget |           |      |  |  |  |  |  |  |
|------------------------------------------------------|-----------|------|--|--|--|--|--|--|
| Forks-Hulme (148 acres) Proposed Purchase Price      | \$220,000 |      |  |  |  |  |  |  |
| Transaction Costs                                    | \$10,600  |      |  |  |  |  |  |  |
| Total Costs                                          | \$230,600 |      |  |  |  |  |  |  |
| Proposed Funding Sources                             |           |      |  |  |  |  |  |  |
| Thompson Falls TAC (requested)                       | \$115,300 | 50%  |  |  |  |  |  |  |
| Five Valleys Land Trust (secured)                    | \$55,000  | 24%  |  |  |  |  |  |  |
| MT Fish & Wildlife Conservation Trust (requested)    | \$25,000  | 11%  |  |  |  |  |  |  |
| Private fundraising                                  | \$35,300  | 15%  |  |  |  |  |  |  |
| Total Proposed Funds                                 | \$230,600 | 100% |  |  |  |  |  |  |

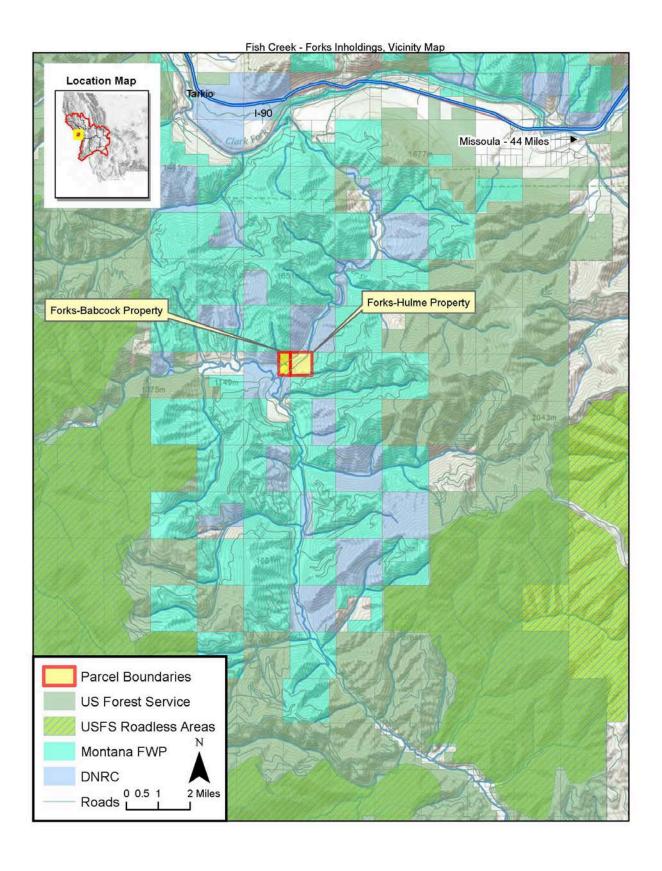
Costs related to direct labor, overhead, travel, living and materials would be covered separately by Five Valleys, and are not included in this proposal.

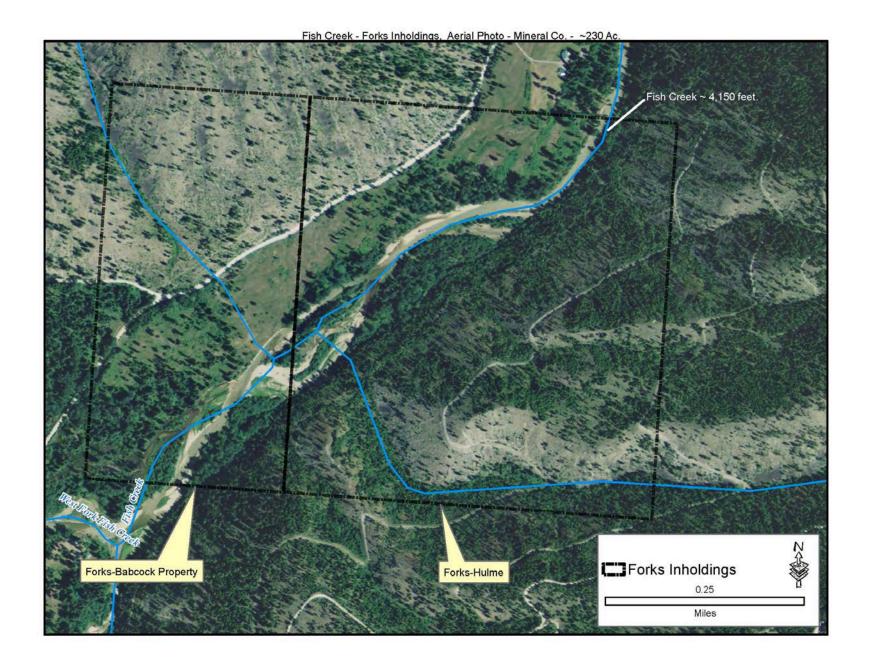
VII. Deliverables. Describe work product (reports, habitat restoration, etc.) which will result from this project. How will "success" for this project be monitored or demonstrated? The application proposes to purchase real estate in order to protect and enhance current natural resource values. Direct success of this project would be measured by the degree of disturbance and general natural integrity of the property through time as it is enhanced and allowed to naturally recover from light forestry activity. Enhancements would include tree planting and riparian protection, and potentially instream habitat enhancement (e.g., increased complexity through LWD addition).

Indirect indications of success would be continued expansion and resilience of the Fish Creek bull trout population. Bull trout are monitored through established redd count surveys and population estimate sections.

VIII. Cultural Resources. Cultural Resource Management (CRM) requirements for any activity related to this proposal must be completed and documented to PPL Montana as a condition of any TAC grant. TAC funds may not be used for any land-disturbing activity, or the modification, renovation, or removal of any buildings or structures until the CRM consultation process has been completed. Agency applicants must submit a copy of the proposed project to a designated Cultural Resource Specialist for their agency. Private parties or non-governmental organizations are encouraged to submit a copy of their proposed project to a CRM consultant they may have employed. Private parties and non-governmental organizations may also contact the PPL Montana representative for further information or assistance. Applications submitted without this section completed, will be held by the TAC, without any action, until the information has been submitted. Summarize below how you will complete requirements for Cultural Resource Management:

A cultural resource survey has not been completed on either of the properties proposed for purchase. However, surveys were completed in 2009 at a much larger scale on ~ 28,000 acres of surrounding lands acquired by FWP to form the Fish Creek WMA and State Park. Although no ground disturbing activities are currently proposed, a cultural resource survey would be completed by FWP at the time of sale.


**TAC VOTE:** TAC approved funding for Phase 1 (\$115,300) of the proposed project. Funding for Phase 2 was not approved during the 2011 annual Thompson Falls TAC meeting.


**Detailed Transaction Costs and Phase II Budget** 

| Main Stem Fish Creek Land Acquisition |          |          |               |
|---------------------------------------|----------|----------|---------------|
| Transaction Costs:                    | Phase I  | Phase II | Total Project |
| Appraisal                             | \$3,900  | \$3,900  | \$7,800       |
| Title Guarantee                       | \$750    | \$750    | \$1,500       |
| Mineral Research*                     | \$300    | \$0      | \$300         |
| Baseline Assessment*                  | \$1,500  | \$0      | \$1,500       |
| Phase 1 Environmental Assessment*     | \$3,000  | \$0      | \$3,000       |
| Other (legal fees)                    | \$750    | \$750    | \$1,500       |
| Recording & Closing Fees              | \$400    | \$200    | \$600         |
| Total Transaction Costs               | \$10,600 | \$5,600  | \$16,200      |

<sup>\*</sup>In order to reduce costs the mineral research, baseline assessment and Phase 1 Environmental Assessment would be conducted for both land acquisitions simultaneously.

| Main Stem Fish Creek Land Acquisition Phase II Bud | get       |      |
|----------------------------------------------------|-----------|------|
| Forks-Babcock (80 acres) Proposed Purchase         |           |      |
| Price                                              | \$155,000 |      |
| Transaction Costs                                  | \$5,600   |      |
| Total Costs                                        | \$160,600 |      |
|                                                    |           |      |
| Proposed Funding Sources                           |           |      |
| Thompson Falls TAC (requested)                     | \$80,300  | 50%  |
| Five Valleys Land Trust (secured)                  | \$30,000  | 19%  |
| MT Fish & Wildlife Conservation Trust              |           |      |
| (requested)                                        | \$10,000  | 6%   |
| Private fundraising                                | \$40,300  | 25%  |
| Total Fee Purchase Price                           | \$160,600 | 100% |





# 10.0 References

- 126 Federal Regulatory Energy Commission (FERC) 62,105. Order Approving Construction and Operation of Fish Passage Facilities. Issued on February 12, 2009.
- Bernall, S. and K. Duffy. 2012. Upstream Fish Passage Studies Annual Progress Report 2011, Fish Passage / Native Salmonid Program, Appendix C. Report to Avista Corporation, Spokane, Washington. U.S. Fish and Wildlife Service, Creston, Montana and Avista Corporation, Noxon, Montana.
- Bernall, S., K. Duffy and L. Lockard. 2011. Upstream Fish Passage Studies Annual Progress Report 2010, Fish Passage / Native Salmonid Program, Appendix C. Report to Avista Corporation, Spokane, Washington, U.S. Fish and Wildlife Service, Creston, Montana and Avista Corporation, Noxon, Montana.
- Moran, S. 2012. Fish Capturing Facilities Developing and Testing Studies, Development and Evaluation of Fish Capturing Facilities: Nighttime Electrofishing, Hook-and-Line, and Cabinet Gorge Fish Hatchery Ladder 2011, Fish Passage / Native Salmonid Restoration Program. Avista Corporation, Spokane, Washington.
- DeHaan, P., B. Adams, L. Godfrey and D. Hawkins. 2010. Rapid Response Genetic Identification of Geographic Origin of Bull Trout Captured at Clark Fork River Dams Annual Report for Calendar Year 2009. U.S. Fish and Wildlife Service, Abernathy Fish Technology Center, Conservation Genetics Program. Report to Avista Corporation, Spokane, Washington and U.S. Fish and Wildlife Service, Creston, Montana.
- Federal Register, 1998. Department Of The Interior Fish and Wildlife Service, 50 CFR Part 17 RIN 1018–AB94, Endangered and Threatened Wildlife and Plants; Determination of Threatened Status for the Klamath River and Columbia River Distinct Population Segments of Bull Trout. Final rule. June 10, 1998.
- Federal Register, 2005. 50 CFR Part 17. Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Klamath River and Columbia River Populations of Bull Trout; Final Rule. September 26, 2005.
- Federal Register, 2010. 50 CFR Part 17. Endangered and Threatened Wildlife and Plants; Revised Designation of Critical Habitat for Bull Trout in the Coterminous United States; Final Rule. October 18, 2010.
- Holton, G. D. 2003. A Field Guide to Montana Fishes. Montana Department of Fish, Wildlife and Parks, 95 pp.
- MOU (Memorandum of Understanding), 2008. Facilitation and Funding of FERC License based Consultation Process and Implementation of Minimization Measures for Bull Trout. PPL Montana, Montana Fish and Wildlife and Parks, U.S. Fish and Wildlife Services, Confederate Salish and Kootenai tribes. Signed January 15, 2008.
- PPL Montana. 2010. Final Thompson Falls Fish Ladder Fishway Operations Manual 1.0. Submitted to FERC, Washington D.C.

- PPL Montana. 2010. Thompson Falls Hydropower Project FERC Project Number 1869. 5-Year Reservoir Monitoring Plan, 2011-2015. Public. Submitted to FERC, Washington D.C.
- PPL Montana. 2010. Thompson Falls Hydropower Project FERC Project Number 1869. Fish Passage Evaluation Plan, Phase 2 Action Plan, 2011-2020. October 2010. Public. Submitted to FERC, Washington D.C.
- PPL Montana. 2010. Total Dissolved Gas Control Plan. Thompson Falls Hydroelectric Project FERC Project Number 1869. Submitted to Montana Department of Environmental Quality, Helena, Montana.
- U.S. Fish and Wildlife Service (FWS). 2008. Biological Opinion for Thompson Falls Hydroelectric Project Bull Trout Consultation. Federal Energy Regulatory Commission Docket No. 1869-048 Montana. PPL Montana, LLC, Licenses. Prepared by FWS Montana ES Field Office, Helena.

# Appendix A – 2011 Baseline Fish Data Collection

## 2011 Thompson Falls Reservoir Gillnetting

Date gillnets set: 10/5/2011 Date gillnets pulled: 10/6/2011

Table A-1. Data collected during 2011 fall gillnetting in the Thompson Falls Reservoir.

| Net      | Latitude                 | Longitude                  | H <sub>2</sub> 0 | Time  | Depth  | Time   | Ĺ    |        |          | Com  |
|----------|--------------------------|----------------------------|------------------|-------|--------|--------|------|--------|----------|------|
| No.      | (N)                      | (W)                        | Temp             | Set   | Set    | Pulled | (mm) | Wt (g) | Sp       | ment |
| 1a       | N.47.58852               | W.115.33651                | 13.5°C           | 14:20 | 0-18'  | 8:50   | 456  | 908    | LC SU    |      |
| 1a       | N.47.58852               | W.115.33651                | 13.5°C           | 14:20 | 0-18'  | 8:50   | 352  | 790    | SMB      |      |
|          |                          |                            |                  |       |        |        |      |        |          |      |
| 1b       | N.47.58814               | W.115.33336                | 13.5°C           | 14:25 | 4-7.5' | 9:00   | 304  | 264    | WCT      |      |
| 1b       | N.47.58814               | W.115.33336                | 13.5°C           | 14:25 | 6'     | 9:00   | 252  | 160    | WCT      |      |
| 1b       | N.47.58814               | W.115.33336                | 13.5°C           | 14:25 | 6'     | 9:00   | 492  | 788    | NP       |      |
| 1b       | N.47.58814               | W.115.33336                | 13.5°C           | 14:25 | 6'     | 9:00   | 595  | 1452   | NP       |      |
| 1b       | N.47.58814               | W.115.33336                | 13.5°C           | 14:25 | 6'     | 9:00   | 613  | 1632   | NP       |      |
| 1b       | N.47.58814               | W.115.33336                | 13.5°C           | 14:25 | 6'     | 9:00   | 532  | 1076   | NP       |      |
|          |                          |                            |                  |       |        |        |      |        |          |      |
| 2a       | N.47.57942               | W.115.31928                | 13.5°C           | 15:00 | 6-25'  | 9:25   |      |        |          | No   |
|          |                          |                            |                  |       |        |        |      |        |          | Fish |
|          |                          |                            |                  |       |        |        |      |        | N        |      |
| 4a       | N.47.56812               | W.115.29570                | 13.5°C           | 15:05 | 6-25'  | 9:35   | 368  | 490    | PMN      |      |
|          |                          |                            |                  |       |        |        |      |        | N        |      |
| 4a       | N.47.56812               | W.115.29570                | 13.5°C           | 15:05 | 6-25'  | 9:35   | 359  | 546    | PMN      |      |
|          |                          |                            |                  |       |        |        |      |        |          |      |
| 6a       | N.47.57809               | W.115.22110                | 13.5°C           | 15:40 | 5-10'  | 10:05  | 150  | 40     | YP       |      |
| 6a       | N.47.57809               | W.115.22110                | 13.5°C           | 15:40 | 5-10'  | 10:05  | 222  | 62     | NP       |      |
| 6a       | N.47.57809               | W.115.22110                | 13.5°C           | 15:40 | 5-10'  | 10:05  | 500  | 1262   | LC SU    |      |
| 6a       | N.47.57809               | W.115.22110                | 13.5°C           | 15:40 | 5-10'  | 10:05  | 590  | 1576   | NP       |      |
|          |                          |                            |                  |       |        |        |      |        |          |      |
| 6b       | N.47.57753               | W.115.22084                | 13.5°C           | 15:30 | 5-11'  | 9:56   | 356  | 444    | N        |      |
|          |                          |                            |                  |       |        |        |      |        | PMN      |      |
| 6b       | N.47.57753               | W.115.22084                | 13.5°C           | 15:30 | 5-11'  | 9:56   | 188  | 54     | PEA      |      |
|          |                          |                            |                  |       |        |        |      |        |          |      |
| 8a       | N.47.57173               | W.115.25995                | 13.5°C           | 15:20 | 6-17'  | 9:50   |      |        |          | No   |
|          |                          |                            |                  |       |        |        |      |        |          | Fish |
| 02       | N.47.59103               | W.115.32737                | 13.9°C           | 14:22 | 6-10'  | 10:15  | 572  | 1230   | NP       |      |
| 9a<br>9a | N.47.59103<br>N.47.59103 | W.115.32737<br>W.115.32737 | 13.9°C           | 14:22 | 6-10'  | 10:15  | 572  | 1516   | NP<br>NP |      |
| 9a<br>9a | N.47.59103<br>N.47.59103 | W.115.32737                | 13.9°C           | 14:22 | 6-10'  | 10:15  | 547  | 1222   | NP<br>NP |      |
| 9a<br>9a | N.47.59103<br>N.47.59103 | W.115.32737                | 13.9°C           | 14:22 | 6-10'  | 10:15  | 212  | 132    | LMB      |      |
| 9a<br>9a | N.47.59103<br>N.47.59103 | W.115.32737                | 13.9°C           | 14:22 | 6-10   | 10:15  | 181  | 76     | YP       |      |
| 9a       | N.47.59103               | W.115.32737                | 13.9°C           | 14:22 | 6-10   | 10:15  | 165  | 50     | YP       |      |
| 9a       | N.47.59103               | W.115.32737                | 13.9°C           | 14:22 | 6-10   | 10:15  | 171  | 54     | YP       |      |
| Ja       | 14.77.00100              | VV.110.02101               | 10.9 0           | 17.22 | 0 10   | 10.10  | 17.1 | J-1    | 11       |      |
|          |                          |                            |                  |       |        |        |      |        |          |      |

| Net<br>No. | Latitude<br>(N) | Longitude<br>(W) | H₂0<br>Temp | Time<br>Set | Depth<br>Set | Time<br>Pulled | L<br>(mm) | Wt (g) | Sp    | Com<br>ment |
|------------|-----------------|------------------|-------------|-------------|--------------|----------------|-----------|--------|-------|-------------|
| 9b         | N.47.59210      | W.115.33022      | 13.5°C      | 14:50       | 6-14'        | 9:20           | 487       | 1352   | LC SU |             |
|            |                 |                  |             |             |              |                |           |        |       |             |
| 10         | N.47.58753      | W.115.32697      | 13.5°C      | 14:35       | 6-19'        | 9:07           | 457       | 954    | LC SU |             |
| 10         | N.47.58753      | W.115.32697      | 13.5°C      | 14:35       | 6-19'        | 9:07           | 512       | 1518   | LC SU |             |
| 10         | N.47.58753      | W.115.32697      | 13.5°C      | 14:35       | 6-19'        | 9:07           | 470       | 1102   | LC SU |             |
| 10         | N.47.58753      | W.115.32697      | 13.5°C      | 14:35       | 6-19'        | 9:07           | 520       | 1670   | LN SU |             |
| 10         | N.47.58753      | W.115.32697      | 13.5°C      | 14:35       | 6-19'        | 9:07           | 499       | 1302   | LN SU |             |
| 10         | N.47.58753      | W.115.32697      | 13.5°C      | 14:35       | 6-19'        | 9:07           | 372       | 792    | LN SU |             |
| 10         | N.47.58753      | W.115.32697      | 13.5°C      | 14:35       | 6-19'        | 9:07           | 217       | 106    | LN SU |             |
| 10         | N.47.58753      | W.115.32697      | 13.5°C      | 14:35       | 6-19'        | 9:07           | 175       | 52     | LN SU |             |
| 10         | N.47.58753      | W.115.32697      | 13.5°C      | 14:35       | 6-19'        | 9:07           | 618       | 1680   | NP    |             |

# 2011 Thompson Falls Reservoir Electrofishing, Lower Section

Sampling Location: N 47.58700, W 115.32805 Date 4/13/11

Sampling Time: Night, Duration (sec): 3,647

Weather: Air Temperature 45°F, overcast, calm wind and light rain, Water Temp 5.8°C

Data Collectors: BM, JH, JS

Table B-2. Data collected during 2011 electrofishing efforts in Thompson Falls Reservoir.

| Capture<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag<br>No./Floy ID | Reca<br>p? |
|----------------|-----------------|----------------|------------|------------------------|------------|
| 1              | LMB             | 434            | 1310       |                        | n          |
| 2              | RB              | 320            | 392        |                        | n          |
| 3              | NP              | 262            | 96         |                        | n          |
| 4              | PUMP            | 150            | 78         |                        | n          |
| 5              | NP              | 272            | 124        |                        | n          |
| 6              | WCT             | 265            | 148        |                        | n          |
| 7              | PUMP            | 146            | 78         |                        | n          |
| 8              | PUMP            | 138            | 56         |                        | n          |
| 9              | PUMP            | 135            | 62         |                        | n          |
| 10             | LMB             | 360            | 760        |                        | n          |
| 11             | YP              | 210            | 106        |                        | n          |
| 12             | LMB             | 116            | 26         |                        | n          |
| 13             | NP              | 268            | 124        |                        | n          |
| 14             | N PMN           | 205            | 70         |                        | n          |
| 15             | NP              | 263            | 98         |                        | n          |
| 16             | NP              | 272            | 114        |                        | n          |
| 17             | NP              | 266            | 112        |                        | n          |
| 18             | NP              | 544            | 445        | o floy 00306           | у          |
| 19             | NP              | 265            | 128        |                        | n          |
| 20             | NP              | 509            | 822        | o floy<br>00316&317    | n          |
| 21             | NP              | 505            | 792        | o floy 00318           | n          |
| 22             | LMB             | 135            | 26         | •                      | n          |
| 23             | LMB             | 132            | 30         |                        | n          |
| 24             | LMB             | 135            | 38         |                        | n          |
| 25             | PUMP            | 130            | 52         |                        | n          |
| 26             | LC SU           | 440            | 534        |                        | n          |
| 27             | NP              | 218            | 64         |                        | n          |
| 28             | NP              | 245            | 76         |                        | n          |
| 29             | NP              | 240            | 94         |                        | n          |
| 30             | NP              | 246            | 97         |                        | n          |
| 31             | NP              | 252            | 110        |                        | n          |
| 32             | NP              | 301            | 166        |                        | n          |
| 33             | NP              | 526            | 988        | o floy 00319           | n          |
| 34             | LMB             | 140            | 30         |                        | n          |

## 2010 Thompson Falls Reservoir Electrofishing, Upper Section

Sampling Time: Night, Date: 4/14/11

Weather: 36 °F, partly cloudy, calm wind and no precipitation, Water Temp. 5.1 °C

Data Collectors: BM, CH, HC Duration (sec): 6,848

Table B-3. Data collected during 2011 electrofishing efforts in the upper section of the

**Thompson Falls Reservoir** 

| Capture<br>No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy<br>ID | Recap? |
|----------------|-----------------|-------------|------------|------------------------|--------|
| 1              | N PMN           | 69          | 2          |                        | n      |
| 2              | LC SU           | 152         | 30         |                        | n      |
| 3              | NP              | 531         | 1028       | o floy 00320           | n      |
| 4              | MWF             | 356         | 468        | •                      | n      |
| 5              | MWF             | 354         | 410        |                        | n      |
| 6              | NP              | 449         | 576        | o floy 00321           | n      |
| 7              | NP              | 516         | 940        | o floy 00322           | n      |
| 8              | RB              | 430         | 840        | •                      | n      |
| 9              | RB              | 398         | 566        |                        | n      |
| 10             | RB              | 326         | 780        |                        | n      |
| 11             | RB              | 319         | 338        |                        | n      |
| 12             | WCT             | 264         | 194        |                        | n      |
| 13             | RB              | 226         | 108        |                        | n      |
| 14             | RB              | 163         | 36         |                        | n      |
| 15             | LL              | 167         | 48         |                        | n      |
| 16             | RB              | 196         | 74         |                        | n      |
| 17             | RB              | 129         | 20         |                        | n      |
| 18             | LL              | 106         | 14         |                        | n      |
| 19             | MWF             | 142         | 20         |                        | n      |
| 20             | MWF             | 143         | 20         |                        | n      |
| 21             | N PMN           | 129         | 16         |                        | n      |
| 22             | LC SU           | 116         | 16         |                        | n      |
| 23             | LC SU           | 127         | 18         |                        | n      |
| 24             | MWF             | 106         | 4          |                        | n      |
| 25             | MWF             | 207         | 76         |                        | n      |
| 26             | MWF             | 180         | 40         |                        | n      |
| 27             | MWF             | 142         | 22         |                        | n      |
| 28             | WCT             | 349         | 390        |                        | n      |
| 29             | RB              | 396         | 582        |                        | n      |
| 30             | RB              | 404         | 710        |                        | n      |
| 31             | RB              | 353         | 432        |                        | n      |
| 32             | RB              | 422         | 770        |                        | n      |
| 33             | RB              | 465         | 808        |                        | n      |
| 34             | RB              | 377         | 532        |                        | n      |
| 35             | RB              | 183         | 58         |                        | n      |
| 36             | NP              | 559         | 1216       | o floy 00323           | n      |
| 37             | NP              | 306         | 174        | o floy 00324           | n      |
| 38             | LL              | 236         | 104        |                        | n      |
| 39             | WCT             | 262         | 156        |                        | n      |

| Capture<br>No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy<br>ID | Recap? |
|----------------|-----------------|-------------|------------|------------------------|--------|
| 40             | NP              | 593         | 1708       | o floy 00525           | n      |
| 41             | NP              | 512         | 970        | o floy 00524           | n      |
| 42             | RB              | 130         | 18         |                        | n      |
| 43             | RB              | 169         | 42         |                        | n      |
| 44             | YP              | 150         | 34         |                        | n      |
| 45             | YP              | 130         | 22         |                        | n      |
| 46             | YP              | 138         | 30         |                        | n      |
| 47             | LC SU           | 133         | 24         |                        | n      |
| 48             | LC SU           | 129         | 20         |                        | n      |
| 49             | LC SU           | 126         | 20         |                        | n      |
| 50             | LC SU           | 123         | 16         |                        | n      |
| 51             | MWF             | 146         | 22         |                        | n      |
| 52             | MWF             | 124         | 18         |                        | n      |
| 53             | LC SU           | 155         | 36         |                        | n      |
| 54             | LC SU           | 123         | 20         |                        | n      |
| 55             | LC SU           | 117         | 18         |                        | n      |
| 56             | LC SU           | 117         | 14         |                        | n      |
| 57             | LC SU           | 122         | 16         |                        | n      |
| 58             | N PMN           | 150         | 22         |                        | n      |
| 59             | N PMN           | 143         | 22         |                        | n      |
| 60             | N PMN           | 176         | 48         |                        | n      |
| 61             | LC SU           | 146         | 26         |                        | n      |
| 62             | LC SU           | 134         | 22         |                        | n      |
| 63             | LL              | 104         | 8          |                        | n      |
| 64             | MWF             | 147         | 18         |                        | n      |
| 65             | LC SU           | 141         | 26         |                        | n      |
| 66             | LC SU           | 140         | 24         |                        | n      |
| 67             | LC SU           | 129         | 20         |                        | n      |
| 68             | LC SU           | 151         | 32         |                        | n      |
| 69             | LC SU           | 120         | 16         |                        | n      |
| 70             | LC SU           | 123         | 16         |                        | n      |
| 71             | RB              | 141         | 22         |                        | n      |
| 72             | RB              | 188         | 56         |                        | n      |
| 73             | LL              | 185         | 52         |                        | n      |
| 74             | LL              | 173         | 42         |                        | n      |
| 75             | SMB             | 106         | 16         |                        | n      |
| 76             | YP              | 162         | 54         |                        | n      |
| 77             | YP              | 160         | 56         |                        | n      |
| 78             | YP              | 143         | 32         |                        | n      |
| 79             | YP              | 196         | 92         |                        | n      |
| 80             | LC SU           | 151         | 30         |                        | n      |
| 81             | LC SU           | 152         | 26         |                        | n      |
| 82             | LC SU           | 148         | 30         |                        | n      |
| 83             | LC SU           | 126         | 18         |                        | n      |
| 84             | LC SU           | 132         | 18         |                        | n      |
| 85             | LC SU           | 110         | 12         |                        | n      |

| Capture<br>No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy<br>ID | Recap? |
|----------------|-----------------|-------------|------------|------------------------|--------|
| 86             | LC SU           | 106         | 10         |                        | n      |
| 87             | LC SU           | 153         | 30         |                        | n      |
| 88             | LC SU           | 114         | 16         |                        | n      |
| 89             | N PMN           | 147         | 20         |                        | n      |
| 90             | N PMN           | 92          | 6          |                        | n      |
| 91             | RB              | 171         | 46         |                        | n      |
| 92             | LC SU           | 143         | 26         |                        | n      |
| 93             | LC SU           | 113         | 10         |                        | n      |
| 94             | LC SU           | 156         | 38         |                        | n      |
| 95             | RB              | 117         | 14         |                        | n      |
| 96             | MWF             | 136         | 18         |                        | n      |
| 97             | N PMN           | 72          | 2          |                        | n      |
| 98             | LC SU           | 116         | 12         |                        | n      |
| 99             | N PMN           | 71          | 2          |                        | n      |
| 100            | RB              | 107         | 12         |                        | n      |
| 101            | LC SU           | 154         | 36         |                        | n      |
| 102            | LC SU           | 112         | 14         |                        | n      |
| 103            | LC SU           | 112         | 12         |                        | n      |
| 104            | LC SU           | 139         | 22         |                        | n      |
| 105            | LC SU           | 110         | 12         |                        | n      |
| 106            | N PMN           | 82          | 2          |                        | n      |
| 107            | LL              | 121         | 16         |                        | n      |
| 108            | LC SU           | 590         | 1322       |                        | n      |
| 109            | RB              | 368         | 600        |                        | n      |
| 110            | RB              | 350         | 450        |                        | n      |
| 111            | RB              | 180         | 52         |                        | n      |
| 112            | RB              | 162         | 42         |                        | n      |
| 113            | LC SU           | 71          |            |                        | n      |
| 114            | RB              | 162         | 50         |                        | n      |
| 115            | RB              | 160         | 40         |                        | n      |
| 116            | RB              | 170         | 50         |                        | n      |
| 117            | RB              | 166         | 46         |                        | n      |
| 118            | RB              | 135         | 24         |                        | n      |
| 119            | N PMN           | 430         | 762        |                        | n      |
| 120            | LL              | 230         | 146        |                        | n      |
| 121            | N PMN           | 140         | 22         |                        | n      |
| 122            | N PMN           | 142         | 20         |                        | n      |
| 123            | N PMN           | 360         | 408        |                        | n      |
| 124            | N PMN           | 150         | 23         |                        | n      |
| 125            | N PMN           | 150         | 22         |                        | n      |
| 126            | LC SU           | 435         | 834        |                        | n      |
| 127            | LC SU           | 123         | 16         |                        | n      |
| 128            | LC SU           | 147         | 30         |                        | n      |
| 129            | LC SU           | 130         | 18         |                        | n      |
| 130            | LC SU           | 130         | 20         |                        | n      |
| 131            | LC SU           | 153         | 26         |                        | n      |

| Capture<br>No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy<br>ID | Recap? |
|----------------|-----------------|-------------|------------|------------------------|--------|
| 132            | LSS             | 175         | 54         |                        | n      |
| 133            | LSS             | 125         | 20         |                        | n      |
| 134            | LSS             | 143         | 40         |                        | n      |
| 135            | LSS             | 141         | 28         |                        | n      |
| 136            | N PMN           | 100         | 6          |                        | n      |
| 137            | LSS             | 140         | 28         |                        | n      |
| 138            | LSS             | 120         | 16         |                        | n      |
| 139            | LSS             | 120         | 14         |                        | n      |
| 140            | LSS             | 95          | 10         |                        | n      |
| 141            | LSS             | 128         | 18         |                        | n      |
| 142            | LSS             | 140         | 28         |                        | n      |
| 143            | LSS             | 112         | 12         |                        | n      |
| 144            | NP              | 577         | 1384       | o floy 00522           | n      |
| 145            | LSS             | 112         | 12         |                        | n      |
| 146            | LSS             | 120         | 16         |                        | n      |
| 147            | LSS             | 132         | 20         |                        | n      |
| 148            | LSS             | 125         | 16         |                        | n      |

## 2011 Clark Fork River Above Island Complex Electrofishing, River Left

Sampling Date 10/5/2011 Duration (sec) 8413

Water Temp. 13.3°C

Data Collectors: BM, JS, HC Latitude N.47.54326 Longitude W.115.10143

Table B-4. Data collection during 2011 electrofishing in the Clark Fork River above the Island Complex, river left.

| Capture<br>No. | Species Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|--------------|----------------|------------|------------------------|----------|
| 1              | LL           | 130            | 20         |                        |          |
| 2              | LL           | 208            | 82         | 985121027388306        | AD Clip  |
| 3              | LL           | 240            | 136        | 985121027357726        | AD Clip  |
| 4              | LC SU        | 465            | 932        |                        |          |
| 5              | LC SU        | 438            | 922        |                        |          |
| 6              | LC SU        | 475            | 1162       |                        |          |
| 7              | LC SU        | 425            | 776        |                        |          |
| 8              | LC SU        | 540            | 1648       |                        |          |
| 9              | LC SU        | 521            | 1528       |                        |          |
| 10             | LC SU        | 470            | 952        |                        |          |
| 11             | LC SU        | 475            | 122        |                        |          |
| 12             | LC SU        | 471            | 1106       |                        |          |
| 13             | LC SU        | 455            | 966        |                        |          |
| 14             | LC SU        | 525            | 1334       |                        |          |
| 15             | LC SU        | 495            | 1234       |                        |          |
| 16             | LC SU        | 510            | 1366       |                        |          |
| 17             | LC SU        | 528            | 1656       |                        |          |
| 18             | LC SU        | 452            | 946        |                        |          |
| 19             | LC SU        | 450            | 922        |                        |          |
| 20             | LC SU        | 475            | 1144       |                        |          |
| 21             | LC SU        | 505            | 1376       |                        |          |
| 22             | LC SU        | 480            | 982        |                        |          |
| 23             | LC SU        | 520            | 1372       |                        |          |
| 24             | LC SU        | 515            | 1322       |                        |          |
| 25             | LC SU        | 502            | 1062       |                        |          |
| 26             | LC SU        | 530            | 1592       |                        |          |
| 27             | LC SU        | 523            | 1444       |                        |          |
| 28             | LC SU        | 500            | 1092       |                        |          |
| 29             | LC SU        | 112            | 22         |                        |          |
| 30             | LC SU        | 101            | 10         |                        |          |
| 31             | LC SU        | 422            | 778        |                        |          |
| 32             | LC SU        | 480            | 964        |                        |          |
| 33             | LC SU        | 476            | 1050       |                        |          |
| 34             | LC SU        | 530            | 1314       |                        |          |
| 35             | LC SU        | 502            | 1208       |                        |          |
| 36             | LC SU        | 445            | 930        |                        |          |
| 37             | LC SU        | 455            | 398        |                        |          |
| 38             | LC SU        | 465            | 1008       |                        |          |
| 39             | LC SU        | 476            | 1124       |                        |          |

| Capture<br>No. | Species Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|--------------|----------------|------------|------------------------|----------|
| 40             | LC SU        | 375            | 514        |                        |          |
| 41             | LC SU        | 490            | 1196       |                        |          |
| 42             | LC SU        | 450            | 1016       |                        |          |
| 43             | LC SU        | 435            | 786        |                        |          |
| 44             | LC SU        | 440            | 880        |                        |          |
| 45             | LC SU        | 548            | 1884       |                        |          |
| 46             | LC SU        | 550            | 1566       |                        |          |
| 47             | LC SU        | 451            | 984        |                        |          |
| 48             | LC SU        | 102            | 8          |                        |          |
| 49             | LC SU        | 351            | 426        |                        |          |
| 50             | LC SU        | 442            | 868        |                        |          |
| 51             | LC SU        | 449            | 924        |                        |          |
| 52             | LC SU        | 452            | 976        |                        |          |
| 53             | LC SU        | 330            | 378        |                        |          |
| 54             | LC SU        | 565            | 1936       |                        |          |
| 55             | LC SU        | 538            | 1518       |                        |          |
| 56             | LC SU        | 543            | 1430       |                        |          |
| 57             | LC SU        | 485            | 1170       |                        |          |
| 58             | LC SU        | 545            | 1736       |                        |          |
| 59             | LC SU        | 463            | 956        |                        |          |
| 60             | LC SU        | 535            | 1452       |                        |          |
| 61             | LC SU        | 545            | 1420       |                        |          |
| 62             | LC SU        | 565            | 1474       |                        |          |
| 63             | LC SU        | 520            | 1356       |                        |          |
| 64             | LC SU        | 560            | 1600       |                        |          |
| 65             | LC SU        | 533            | 1444       |                        |          |
| 66             | LC SU        | 472            | 1032       |                        |          |
| 67             | LC SU        | 467            | 952        |                        |          |
| 68             | LC SU        | 523            | 1244       |                        |          |
| 69             | LC SU        | 470            | 1170       |                        |          |
| 70             | LC SU        | 461            | 984        |                        |          |
| 71             | LC SU        | 527            | 1298       |                        |          |
| 72             | LC SU        | 387            | 560        |                        |          |
| 73             | LC SU        | 455            | 1036       |                        |          |
| 74             | LC SU        | 530            | 1282       |                        |          |
| 75             | LC SU        | 532            | 1460       |                        |          |
| 76             | LC SU        | 427            | 720        |                        |          |
| 77             | LC SU        | 457            | 946        |                        |          |
| 78             | LC SU        | 533            | 1502       |                        |          |
| 79             | LC SU        | 463            | 1074       |                        |          |
| 80             | LC SU        | 522            | 1318       |                        |          |
| 81             | MWF          | 203            | 70         |                        |          |
| 82             | MWF          | 341            | 302        |                        |          |
| 83             | MWF          | 215            | 82         |                        |          |
| 84             | MWF          | 335            | 354        |                        |          |
| 85             | MWF          | 191            | 66         |                        |          |

| Capture<br>No. | Species Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|--------------|----------------|------------|------------------------|----------|
| 86             | MWF          | 342            | 376        |                        |          |
| 87             | MWF          | 190            | 50         |                        |          |
| 88             | MWF          | 196            | 74         |                        |          |
| 89             | MWF          | 191            | 56         |                        |          |
| 90             | MWF          | 262            | 154        |                        |          |
| 91             | MWF          | 268            | 154        |                        |          |
| 92             | MWF          | 213            | 70         |                        |          |
| 93             | MWF          | 340            | 304        |                        |          |
| 94             | MWF          | 198            | 60         |                        |          |
| 95             | MWF          | 176            | 52         |                        |          |
| 96             | MWF          | 210            | 76         |                        |          |
| 97             | MWF          | 187            | 50         |                        |          |
| 98             | MWF          | 404            | 606        |                        |          |
| 99             | MWF          | 125            | 14         |                        |          |
| 100            | MWF          | 385            | 470        |                        |          |
| 101            | MWF          | 370            | 496        |                        |          |
| 102            | MWF          | 131            | 18         |                        |          |
| 103            | MWF          | 192            | 56         |                        |          |
| 104            | MWF          | 262            | 168        |                        |          |
| 105            | MWF          | 192            | 56         |                        |          |
| 106            | MWF          | 195            | 54         |                        |          |
| 107            | MWF          | 130            | 18         |                        |          |
| 108            | MWF          | 285            | 200        |                        |          |
| 109            | MWF          | 355            | 396        |                        |          |
| 110            | MWF          | 322            | 285        |                        |          |
| 111            | MWF          | 201            | 70         |                        |          |
| 112            | MWF          | 192            | 56         |                        |          |
| 113            | MWF          | 252            | 122        |                        |          |
| 114            | MWF          | 195            | 70         |                        |          |
| 115            | MWF          | 255            | 100        |                        |          |
| 116            | MWF          | 202            | 62         |                        |          |
| 117            | MWF          | 362            | 340        |                        |          |
| 118            | MWF          | 196            | 64         |                        |          |
| 119            | MWF          | 112            | 6          |                        |          |
| 120            | MWF          | 192            | 62         |                        |          |
| 121            | MWF          | 210            | 72         |                        |          |
| 122            | MWF          | 185            | 50         |                        |          |
| 123            | MWF          | 172            | 58         |                        |          |
| 124            | MWF          | 305            | 270        |                        |          |
| 125            | MWF          | 375            | 366        |                        |          |
| 126            | MWF          | 194            | 70         |                        |          |
| 127            | MWF          | 192            | 56         |                        |          |
| 128            | MWF          | 210            | 81         |                        |          |
| 129            | MWF          | 171            | 40         |                        |          |
| 130            | MWF          | 202            | 76         |                        |          |
| 131            | MWF          | 305            | 236        |                        |          |

| Capture<br>No. | Species Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|--------------|----------------|------------|------------------------|----------|
| 132            | MWF          | 225            | 90         |                        |          |
| 133            | MWF          | 375            | 466        |                        |          |
| 134            | MWF          | 195            | 56         |                        |          |
| 135            | MWF          | 181            | 50         |                        |          |
| 136            | MWF          | 200            | 66         |                        |          |
| 137            | MWF          | 171            | 48         |                        |          |
| 138            | MWF          | 115            | 10         |                        |          |
| 139            | MWF          | 193            | 56         |                        |          |
| 140            | MWF          | 197            | 58         |                        |          |
| 141            | MWF          | 187            | 56         |                        |          |
| 142            | MWF          | 325            | 336        |                        |          |
| 143            | MWF          | 363            | 394        |                        |          |
| 144            | MWF          | 201            | 60         |                        |          |
| 145            | MWF          | 200            | 64         |                        |          |
| 146            | MWF          | 280            | 180        |                        |          |
| 147            | MWF          | 203            | 70         |                        |          |
| 148            | MWF          | 183            | 44         |                        |          |
| 149            | MWF          | 197            | 62         |                        |          |
| 150            | MWF          | 187            | 44         |                        |          |
| 151            | MWF          | 200            | 156        |                        |          |
| 152            | MWF          | 192            | 58         |                        |          |
| 153            | MWF          | 200            | 66         |                        |          |
| 154            | MWF          | 125            | 12         |                        |          |
| 155            | MWF          | 192            | 56         |                        |          |
| 156            | MWF          | 207            | 68         |                        |          |
| 157            | MWF          | 193            | 56         |                        |          |
| 158            | MWF          | 219            | 76         |                        |          |
| 159            | MWF          | 193            | 58         |                        |          |
| 160            | MWF          | 310            | 216        |                        |          |
| 161            | MWF          | 260            | 156        |                        |          |
| 162            | MWF          | 184            | 48         |                        |          |
| 163            | MWF          | 203            | 68         |                        |          |
| 164            | MWF          | 187            | 50         |                        |          |
| 165            | MWF          | 196            | 58         |                        |          |
| 166            | MWF          | 192            | 50         |                        |          |
| 167            | MWF          | 181            | 42         |                        |          |
| 168            | MWF          | 121            | 12         |                        |          |
| 169            | MWF          | 187            | 54         |                        |          |
| 170            | MWF          | 208            | 66         |                        |          |
| 171            | MWF          | 335            | 298        |                        |          |
| 172            | MWF          | 189            | 54         |                        |          |
| 173            | MWF          | 181            | 46         |                        |          |
| 174            | MWF          | 187            | 48         |                        |          |
| 175            | MWF          | 196            | 58         |                        |          |
| 176            | MWF          | 201            | 70         |                        |          |
| 177            | MWF          | 192            | 54         |                        |          |

| Capture<br>No. | Species Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|--------------|----------------|------------|------------------------|----------|
| 178            | MWF          | 215            | 74         |                        |          |
| 179            | MWF          | 184            | 52         |                        |          |
| 180            | MWF          | 185            | 54         |                        |          |
| 181            | MWF          | 200            | 58         |                        |          |
| 182            | MWF          | 131            | 10         |                        |          |
| 183            | MWF          | 183            | 46         |                        |          |
| 184            | MWF          | 182            | 44         |                        |          |
| 185            | MWF          | 173            | 42         |                        |          |
| 186            | MWF          | 130            | 14         |                        |          |
| 187            | MWF          | 117            | 8          |                        |          |
| 188            | N PMN        | 410            | 562        |                        |          |
| 189            | N PMN        | 123            | 18         |                        |          |
| 190            | N PMN        | 360            | 388        |                        |          |
| 191            | N PMN        | 135            | 20         |                        |          |
| 192            | N PMN        | 375            | 478        |                        |          |
| 193            | N PMN        | 336            | 324        |                        |          |
| 194            | N PMN        | 226            | 282        |                        |          |
| 195            | N PMN        | 335            | 330        |                        |          |
| 196            | N PMN        | 365            | 444        |                        |          |
| 197            | N PMN        | 371            | 370        |                        |          |
| 198            | N PMN        | 360            | 392        |                        |          |
| 199            | N PMN        | 335            | 316        |                        |          |
| 200            | N PMN        | 370            | 476        |                        |          |
| 201            | N PMN        | 365            | 446        |                        |          |
| 202            | N PMN        | 410            | 576        |                        |          |
| 203            | N PMN        | 350            | 400        |                        |          |
| 204            | N PMN        | 122            | 14         |                        |          |
| 205            | N PMN        | 338            | 288        |                        |          |
| 206            | N PMN        | 135            | 20         |                        |          |
| 207            | N PMN        | 435            | 700        |                        |          |
| 208            | N PMN        | 373            | 458        |                        |          |
| 209            | N PMN        | 333            | 286        |                        |          |
| 210            | N PMN        | 133            | 18         |                        |          |
| 211            | N PMN        | 127            | 10         |                        |          |
| 212            | N PMN        | 180            | 46         |                        |          |
| 213            | N PMN        | 347            | 390        |                        |          |
| 214            | N PMN        | 382            | 446        |                        |          |
| 215            | N PMN        | 297            | 220        |                        |          |
| 216            | N PMN        | 303            | 276        |                        |          |
| 217            | N PMN        | 518            | 1318       |                        |          |
| 218            | N PMN        | 165            | 30         |                        |          |
| 219            | NP           | 680            | 2314       | Y-floy 16284           |          |
| 220            | NP           | 603            | 1616       | Y-floy 16285           |          |
| 221            | NP           | 570            | 1390       | Y-Floy 16286           |          |
| 222            | NP           | 550            | 1124       | Y-floy 16283           |          |
| 223            | RB           | 238            | 144        |                        |          |

| Capture<br>No. | Species Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|--------------|----------------|------------|------------------------|----------|
| 224            | RB           | 220            | 120        |                        |          |
| 225            | RB           | 235            | 152        |                        |          |
| 226            | RB           | 202            | 88         |                        |          |
| 227            | RB           | 246            | 158        |                        |          |
| 228            | RB           | 245            | 158        |                        |          |
| 229            | RB           | 220            | 116        |                        |          |
| 230            | RB           | 220            | 106        |                        |          |
| 231            | RB           | 430            | 846        | 985121027366869        | AD Clip  |
| 232            | RB           | 248            | 156        | 985121021860541        | AD Clip  |
| 233            | RB           | 412            | 588        | 985121027363366        | AD Clip  |
| 234            | RB           | 212            | 106        | 985121027385298        | AD Clip  |
| 235            | RB           | 170            | 48         |                        |          |
| 236            | RB           | 212            | 74         | 985121027369875        | AD Clip  |
| 237            | RB           | 331            | 342        | 985121027360438        | AD Clip  |
| 238            | RB           | 258            | 164        | 985121027366618        | AD Clip  |
| 239            | RB           | 375            | 564        | 985121027357383        | AD Clip  |
| 240            | RB           | 230            | 106        | 985121027361054        | AD Clip  |
| 241            | RB           | 326            | 322        | 985121027349617        | AD Clip  |
| 242            | RB           | 450            | 860        | 985121027388215        | AD Clip  |
| 243            | RB           | 355            | 442        | 985121027373632        | AD Clip  |
| 244            | RB           | 235            | 132        | 985121027357342        | AD Clip  |
| 245            | RB           | 347            | 390        | 985121027351899        | AD Clip  |
| 246            | RB           | 418            | 518        | 985121027357714        | AD Clip  |
| 247            | RB           | 211            | 90         | 985121027354783        | AD Clip  |
| 248            | RB           | 477            | 982        | 985121027370610        | AD Clip  |
| 249            | RB           | 397            | 632        | 985121027360240        | AD Clip  |
| 250            | RB           | 388            | 516        | 985121027376774        | AD Clip  |
| 251            | RB           | 228            | 134        | 985121027385529        | AD Clip  |
| 252            | WCT          | 281            | 232        | 985121027379015        | AD Clip  |
| 253            | WCT          | 240            | 162        | 985121027399698        | AD Clip  |
| 254            | WCT          | 385            | 606        | 985121027385481        | AD Clip  |
| 255            | WCT          | 366            | 512        | 985121027370123        | AD Clip  |
| 256            | RBxWCT       | 416            | 766        |                        |          |

# 2011 Clark Fork River Above the Island Complex Electrofishing, River Right

Sampling Date 10/6/2011 Duration (sec) 7988

Water Temp. 12.8°C

Data Collectors: BM, JS, HC Latitude N.47.54324 Longitude W.115.10070

Table B-5. Data collection during 2011 electrofishing in the Clark Fork River above the

Island Complex, river right.

|                | river right.    | Lawarth     |            |                     |          |
|----------------|-----------------|-------------|------------|---------------------|----------|
| Capture<br>No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
| 1              | LL              | 218         | 86         | 985121021900583     | AD Clip  |
| 2              | LL              | 239         | 118        | 985121027393657     | AD Clip  |
| 3              | LL              | 236         | 142        | 985121021869953     | AD Clip  |
| 4              | LL              | 222         | 98         |                     |          |
| 5              | LN SU           | 210         | 80         |                     |          |
| 6              | LN SU           | 187         | 8          |                     |          |
| 7              | LC SU           | 433         | 836        |                     |          |
| 8              | LC SU           | 518         | 1368       |                     |          |
| 9              | LC SU           | 375         | 466        |                     |          |
| 10             | LC SU           | 320         | 326        |                     |          |
| 11             | LC SU           | 342         | 394        |                     |          |
| 12             | LC SU           | 525         | 1388       |                     |          |
| 13             | LC SU           | 440         | 864        |                     |          |
| 14             | LC SU           | 449         | 714        |                     |          |
| 15             | LC SU           | 565         | 1570       |                     |          |
| 16             | LC SU           | 486         | 1202       |                     |          |
| 17             | LC SU           | 482         | 1100       |                     |          |
| 18             | LC SU           | 322         | 332        |                     |          |
| 19             | LC SU           | 508         | 1310       |                     |          |
| 20             | LC SU           | 531         | 1562       |                     |          |
| 21             | LC SU           | 435         | 792        |                     |          |
| 22             | LC SU           | 382         | 586        |                     |          |
| 23             | LC SU           | 415         | 720        |                     |          |
| 24             | LC SU           | 468         | 994        |                     |          |
| 25             | LC SU           | 140         | 20         |                     |          |
| 26             | LC SU           | 111         | 10         |                     |          |
| 27             | LC SU           | 402         | 676        |                     |          |
| 28             | LC SU           | 482         | 1066       |                     |          |
| 29             | LC SU           | 435         | 776        |                     |          |
| 30             | LC SU           | 161         | 34         |                     |          |
| 31             | LC SU           | 140         | 22         |                     |          |
| 32             | LC SU           | 111         | 8          |                     |          |
| 33             | LC SU           | 110         | 10         |                     |          |
| 34             | LC SU           | 508         | 1168       |                     |          |
| 35             | LC SU           | 395         | 642        |                     |          |
| 36             | LC SU           | 541         | 1498       |                     |          |
| 37             | LC SU           | 477         | 1086       |                     |          |
| 38             | LC SU           | 532         | 1606       |                     |          |
| 39             | LC SU           | 540         | 1462       |                     |          |

| Capture<br>No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|----------------|-----------------|-------------|------------|---------------------|----------|
| 40             | LC SU           | 489         | 1180       |                     |          |
| 41             | LC SU           | 429         | 1450       |                     |          |
| 42             | LC SU           | 453         | 798        |                     |          |
| 43             | LC SU           | 477         | 800        |                     |          |
| 44             | LC SU           | 449         | 486        |                     |          |
| 45             | LC SU           | 84          |            |                     |          |
| 46             | LC SU           | 135         | 24         |                     |          |
| 47             | LC SU           | 93          |            |                     |          |
| 48             | LC SU           | 324         | 388        |                     |          |
| 49             | LC SU           | 97          | 8          |                     |          |
| 50             | LC SU           | 555         | 1810       |                     |          |
| 51             | LC SU           | 386         | 600        |                     |          |
| 52             | LC SU           | 474         | 1024       |                     |          |
| 53             | LC SU           | 473         | 946        |                     |          |
| 54             | LC SU           | 441         | 930        |                     |          |
| 55             | LC SU           | 309         | 252        |                     |          |
| 56             | LC SU           | 471         | 1150       |                     |          |
| 57             | LC SU           | 93          | 8          |                     |          |
| 58             | LC SU           | 572         | 1660       |                     |          |
| 59             | LC SU           | 489         | 992        |                     |          |
| 60             | LC SU           | 518         | 1344       |                     |          |
| 61             | LC SU           | 454         | 914        |                     |          |
| 62             | LC SU           | 427         | 782        |                     |          |
| 63             | LC SU           | 350         | 454        |                     |          |
| 64             | LC SU           | 437         | 802        |                     |          |
| 65             | LC SU           | 443         | 850        |                     |          |
| 66             | LC SU           | 440         | 880        |                     |          |
| 67             | LC SU           | 516         | 1462       |                     |          |
| 68             | LC SU           | 473         | 850        |                     |          |
| 69             | LC SU           | 281         | 200        |                     |          |
| 70             | LC SU           | 351         | 450        |                     |          |
| 71             | LC SU           | 107         | 14         |                     |          |
| 72             | LC SU           | 454         | 924        |                     |          |
| 73             | LC SU           | 316         | 326        |                     |          |
| 74             | LC SU           | 500         | 1212       |                     |          |
| 75             | LC SU           | 275         | 202        |                     |          |
| 76             | LC SU           | 95          | 6          |                     |          |
| 77             | LC SU           | 267         | 194        |                     |          |
| 78             | LC SU           | 507         | 1144       |                     |          |
| 79             | LC SU           | 471         | 882        |                     |          |
| 80             | MWF             | 282         | 190        |                     |          |
| 81             | MWF             | 327         | 302        |                     |          |
| 82             | MWF             | 270         | 164        |                     |          |
| 83             | MWF             | 312         | 308        |                     |          |
| 84             | MWF             | 121         | 16         |                     |          |
| 85             | MWF             | 422         | 632        |                     |          |

| Capture<br>No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|----------------|-----------------|-------------|------------|---------------------|----------|
| 86             | MWF             | 330         | 288        |                     |          |
| 87             | MWF             | 251         | 128        |                     |          |
| 88             | MWF             | 182         | 60         |                     |          |
| 89             | MWF             | 352         | 348        |                     |          |
| 90             | MWF             | 385         | 502        |                     |          |
| 91             | MWF             | 268         | 162        |                     |          |
| 92             | MWF             | 195         | 66         |                     |          |
| 93             | MWF             | 287         | 200        |                     |          |
| 94             | MWF             | 333         | 294        |                     |          |
| 95             | MWF             | 257         | 152        |                     |          |
| 96             | MWF             | 315         | 244        |                     |          |
| 97             | MWF             | 196         | 58         |                     |          |
| 98             | MWF             | 182         | 44         |                     |          |
| 99             | MWF             | 325         | 266        |                     |          |
| 100            | MWF             | 273         | 180        |                     |          |
| 101            | MWF             | 308         | 276        |                     |          |
| 102            | MWF             | 241         | 106        |                     |          |
| 103            | MWF             | 195         | 58         |                     |          |
| 104            | MWF             | 118         | 10         |                     |          |
| 105            | MWF             | 131         | 14         |                     |          |
| 106            | MWF             | 118         | 6          |                     |          |
| 107            | MWF             | 330         | 316        |                     |          |
| 108            | MWF             | 251         | 118        |                     |          |
| 109            | MWF             | 253         | 124        |                     |          |
| 110            | MWF             | 237         | 128        |                     |          |
| 111            | MWF             | 335         | 308        |                     |          |
| 112            | MWF             | 418         | 738        |                     |          |
| 113            | MWF             | 310         | 278        |                     |          |
| 114            | MWF             | 191         | 52         |                     |          |
| 115            | MWF             | 349         | 366        |                     |          |
| 116            | MWF             | 291         | 226        |                     |          |
| 117            | MWF             | 337         | 322        |                     |          |
| 118            | MWF             | 350         | 266        |                     |          |
| 119            | MWF             | 116         | 6          |                     |          |
| 120            | MWF             | 350         | 428        |                     |          |
| 121            | MWF             | 205         | 58         |                     |          |
| 122            | MWF             | 196         | 68         |                     |          |
| 123            | MWF             | 335         | 280        |                     |          |
| 124            | MWF             | 347         | 342        |                     |          |
| 125            | MWF             | 308         | 232        |                     |          |
| 126            | MWF             | 251         | 128        |                     |          |
| 127            | MWF             | 278         | 182        |                     |          |
| 128            | MWF             | 260         | 156        |                     |          |
| 129            | MWF             | 272         | 174        |                     |          |
| 130            | MWF             | 191         | 56         |                     |          |
| 131            | MWF             | 202         | 66         |                     |          |

| Capture<br>No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|----------------|-----------------|-------------|------------|---------------------|----------|
| 132            | MWF             | 201         | 62         |                     |          |
| 133            | MWF             | 256         | 128        |                     |          |
| 134            | MWF             | 233         | 114        |                     |          |
| 135            | MWF             | 200         | 56         |                     |          |
| 136            | MWF             | 240         | 106        |                     |          |
| 137            | MWF             | 390         | 516        |                     |          |
| 138            | MWF             | 187         | 58         |                     |          |
| 139            | MWF             | 122         | 14         |                     |          |
| 140            | MWF             | 337         | 334        |                     |          |
| 141            | MWF             | 342         | 334        |                     |          |
| 142            | MWF             | 320         | 286        |                     |          |
| 143            | MWF             | 300         | 254        |                     |          |
| 144            | MWF             | 196         |            |                     |          |
| 145            | MWF             | 172         |            |                     |          |
| 146            | MWF             | 124         |            |                     |          |
| 147            | MWF             | 196         | 50         |                     |          |
| 148            | MWF             | 389         | 538        |                     |          |
| 149            | MWF             | 342         | 330        |                     |          |
| 150            | MWF             | 354         | 382        |                     |          |
| 151            | MWF             | 264         | 162        |                     |          |
| 152            | MWF             | 367         | 448        |                     |          |
| 153            | MWF             | 178         | 50         |                     |          |
| 154            | MWF             | 210         | 62         |                     |          |
| 155            | MWF             | 176         | 74         |                     |          |
| 156            | MWF             | 377         | 426        |                     |          |
| 157            | MWF             | 124         | 8          |                     |          |
| 158            | MWF             | 127         | 8          |                     |          |
| 159            | MWF             | 111         | 10         |                     |          |
| 160            | MWF             | 199         | 70         |                     |          |
| 161            | MWF             | 203         | 70         |                     |          |
| 162            | MWF             | 113         | 16         |                     |          |
| 163            | MWF             | 111         | 10         |                     |          |
| 164            | MWF             | 132         | 10         |                     |          |
| 165            | MWF             | 193         | 60         |                     |          |
| 166            | MWF             | 209         | 72         |                     |          |
| 167            | MWF             | 358         | 360        |                     |          |
| 168            | MWF             | 184         | 50         |                     |          |
| 169            | MWF             | 241         | 318        |                     |          |
| 170            | MWF             | 319         | 290        |                     |          |
| 171            | MWF             | 317         | 270        |                     |          |
| 172            | MWF             | 193         | 54         |                     |          |
| 173            | MWF             | 324         | 298        |                     |          |
| 174            | MWF             | 191         | 58         |                     |          |
| 175            | MWF             | 118         | 12         |                     |          |
| 176            | MWF             | 205         | 66         |                     |          |
| 177            | MWF             | 189         | 62         |                     |          |

| Capture<br>No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|----------------|-----------------|-------------|------------|---------------------|----------|
| 178            | MWF             | 180         | 48         |                     |          |
| 179            | MWF             | 259         | 148        |                     |          |
| 180            | MWF             | 131         | 16         |                     |          |
| 181            | MWF             | 404         | 466        |                     |          |
| 182            | MWF             | 182         | 44         |                     |          |
| 183            | MWF             | 261         | 116        |                     |          |
| 184            | MWF             | 102         | 6          |                     |          |
| 185            | MWF             | 103         | 6          |                     |          |
| 186            | MWF             | 204         | 68         |                     |          |
| 187            | MWF             | 183         | 48         |                     |          |
| 188            | MWF             | 350         | 400        |                     |          |
| 189            | MWF             | 181         | 48         |                     |          |
| 190            | MWF             | 193         | 58         |                     |          |
| 191            | MWF             | 202         | 60         |                     |          |
| 192            | MWF             | 382         | 434        |                     |          |
| 193            | MWF             | 256         | 138        |                     |          |
| 194            | MWF             | 289         | 218        |                     |          |
| 195            | MWF             | 224         | 80         |                     |          |
| 196            | MWF             | 190         | 60         |                     |          |
| 197            | MWF             | 209         | 68         |                     |          |
| 198            | MWF             | 244         | 115        |                     |          |
| 199            | MWF             | 249         | 120        |                     |          |
| 200            | MWF             | 186         | 52         |                     |          |
| 201            | MWF             | 191         | 50         |                     |          |
| 202            | MWF             | 199         | 80         |                     |          |
| 203            | MWF             | 132         | 20         |                     |          |
| 204            | MWF             | 189         | 54         |                     |          |
| 205            | MWF             | 199         | 52         |                     |          |
| 206            | MWF             | 177         | 32         |                     |          |
| 207            | MWF             | 127         | 10         |                     |          |
| 208            | MWF             | 174         | 44         |                     |          |
| 209            | MWF             | 124         |            |                     |          |
| 210            | MWF             | 111         |            |                     |          |
| 211            | MWF             | 122         |            |                     |          |
| 212            | MWF             | 117         |            |                     |          |
| 213            | MWF             | 121         |            |                     |          |
| 214            | MWF             | 199         | 52         |                     |          |
| 215            | MWF             | 184         | 48         |                     |          |
| 216            | MWF             | 294         | 230        |                     |          |
| 217            | MWF             | 434         | 652        |                     |          |
| 218            | MWF             | 199         | 60         |                     |          |
| 219            | MWF             | 114         |            |                     |          |
| 220            | MWF             | 293         | 436        |                     |          |
| 221            | MWF             | 359         | 350        |                     |          |
| 222            | MWF             | 201         | 64         |                     |          |
| 223            | MWF             | 181         | 50         |                     |          |

| Capture<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|----------------|-----------------|----------------|------------|---------------------|----------|
| 224            | MWF             | 257            | 138        |                     |          |
| 225            | MWF             | 120            | 6          |                     |          |
| 226            | MWF             | 201            | 66         |                     |          |
| 227            | MWF             | 337            | 318        |                     |          |
| 228            | MWF             | 391            | 450        |                     |          |
| 229            | MWF             | 206            | 70         |                     |          |
| 230            | MWF             | 116            | 16         |                     |          |
| 231            | MWF             | 181            | 52         |                     |          |
| 232            | MWF             | 202            | 64         |                     |          |
| 233            | MWF             | 253            | 130        |                     |          |
| 234            | MWF             | 377            | 502        |                     |          |
| 235            | MWF             | 113            | 12         |                     |          |
| 236            | MWF             | 93             | 8          |                     |          |
| 237            | MWF             | 262            | 140        |                     |          |
| 238            | MWF             | 197            | 64         |                     |          |
| 239            | MWF             | 124            | 16         |                     |          |
| 240            | MWF             | 133            | 24         |                     |          |
| 241            | MWF             | 292            | 204        |                     |          |
| 242            | MWF             | 181            | 58         |                     |          |
| 243            | MWF             | 113            | 18         |                     |          |
| 244            | MWF             | 187            | 58         |                     |          |
| 245            | MWF             | 197            | 62         |                     |          |
| 246            | MWF             | 125            | 10         |                     |          |
| 247            | MWF             | 184            | 48         |                     |          |
| 248            | MWF             | 115            | 5          |                     |          |
| 249            | MWF             | 206            | 56         |                     |          |
| 250            | MWF             | 341            | 316        |                     |          |
| 251            | MWF             | 197            | 66         |                     |          |
| 252            | MWF             | 534            | 1438       |                     |          |
| 253            | MWF             | 197            | 58         |                     |          |
| 254            | MWF             | 209            | 70         |                     |          |
| 255            | MWF             | 246            | 122        |                     |          |
| 256            | MWF             | 184            | 48         |                     |          |
| 257            | MWF             | 201            | 60         |                     |          |
| 258            | MWF             | 204            | 64         |                     |          |
| 259            | MWF             | 199            | 68         |                     |          |
| 260            | MWF             | 189            | 82         |                     |          |
| 261            | MWF             | 206            | 76         |                     |          |
| 262            | MWF             | 189            | 54         |                     |          |
| 263            | MWF             | 212            | 76         |                     |          |
| 264            | MWF             | 191            | 48         |                     |          |
| 265            | MWF             | 270            | 140        |                     |          |
| 266            | MWF             | 218            | 76         |                     |          |
| 267            | MWF             | 368            | 420        |                     |          |
| 268            | MWF             | 128            | 16         |                     |          |
| 269            | MWF             | 133            | 16         |                     |          |

| Capture<br>No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|----------------|-----------------|-------------|------------|---------------------|----------|
| 270            | MWF             | 129         | 20         |                     |          |
| 271            | MWF             | 196         | 60         |                     |          |
| 272            | MWF             | 127         | 14         |                     |          |
| 273            | MWF             | 190         | 50         |                     |          |
| 274            | MWF             | 349         | 372        |                     |          |
| 275            | MWF             | 284         | 180        |                     |          |
| 276            | MWF             | 114         | 12         |                     |          |
| 277            | MWF             | 382         | 424        |                     |          |
| 278            | MWF             | 307         | 216        |                     |          |
| 279            | MWF             | 253         | 154        |                     |          |
| 280            | MWF             | 110         | 12         |                     |          |
| 281            | MWF             | 182         | 46         |                     |          |
| 282            | MWF             | 190         | 58         |                     |          |
| 283            | MWF             | 206         | 60         |                     |          |
| 284            | MWF             | 197         | 54         |                     |          |
| 285            | MWF             | 297         | 218        |                     |          |
| 286            | MWF             | 219         | 76         |                     |          |
| 287            | MWF             | 421         | 548        |                     |          |
| 288            | MWF             | 117         | 14         |                     |          |
| 289            | MWF             | 259         | 150        |                     |          |
| 290            | MWF             | 365         | 352        |                     |          |
| 291            | MWF             | 104         |            |                     |          |
| 292            | MWF             | 199         | 62         |                     |          |
| 293            | MWF             | 118         | 18         |                     |          |
| 294            | MWF             | 212         | 84         |                     |          |
| 295            | MWF             | 181         | 60         |                     |          |
| 296            | MWF             | 170         | 46         |                     |          |
| 297            | MWF             | 189         | 50         |                     |          |
| 298            | MWF             | 354         | 362        |                     |          |
| 299            | MWF             | 112         | 14         |                     |          |
| 300            | MWF             | 207         | 64         |                     |          |
| 301            | MWF             | 113         | 10         |                     |          |
| 302            | MWF             | 196         | 60         |                     |          |
| 303            | MWF             | 200         | 54         |                     |          |
| 304            | MWF             | 302         | 250        |                     |          |
| 305            | MWF             | 369         | 386        |                     |          |
| 306            | MWF             | 175         | 42         |                     |          |
| 307            | MWF             | 208         | 66         |                     |          |
| 308            | MWF             | 188         | 50         |                     |          |
| 309            | N PMN           | 355         | 360        |                     |          |
| 310            | N PMN           | 460         | 880        |                     |          |
| 311            | N PMN           | 408         | 616        |                     |          |
| 312            | N PMN           | 414         | 660        |                     |          |
| 313            | N PMN           | 345         | 318        |                     |          |
| 314            | N PMN           | 182         | 32         |                     |          |
| 315            | N PMN           | 360         | 388        |                     |          |

| Capture<br>No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|----------------|-----------------|-------------|------------|---------------------|----------|
| 316            | N PMN           | 365         | 432        |                     |          |
| 317            | N PMN           | 357         | 398        |                     |          |
| 318            | N PMN           | 377         | 526        |                     |          |
| 319            | N PMN           | 482         | 290        |                     |          |
| 320            | N PMN           | 488         | 1344       |                     |          |
| 321            | N PMN           | 310         | 254        |                     |          |
| 322            | N PMN           | 550         | 1610       |                     |          |
| 323            | N PMN           | 440         | 900        |                     |          |
| 324            | N PMN           | 387         | 568        |                     |          |
| 325            | N PMN           | 470         | 988        |                     |          |
| 326            | N PMN           | 362         | 416        |                     |          |
| 327            | N PMN           | 358         | 408        |                     |          |
| 328            | N PMN           | 365         | 408        |                     |          |
| 329            | N PMN           | 353         | 356        |                     |          |
| 330            | N PMN           | 457         | 888        |                     |          |
| 331            | N PMN           | 351         | 370        |                     |          |
| 332            | N PMN           | 281         | 208        |                     |          |
| 333            | N PMN           | 135         | 16         |                     |          |
| 334            | N PMN           | 305         | 274        |                     |          |
| 335            | N PMN           | 390         | 624        |                     |          |
| 336            | N PMN           | 479         | 1372       |                     |          |
| 337            | N PMN           | 398         | 530        |                     |          |
| 338            | N PMN           | 482         | 1236       |                     |          |
| 339            | N PMN           | 447         | 850        |                     |          |
| 340            | N PMN           | 138         | 24         |                     |          |
| 341            | N PMN           | 281         | 492        |                     |          |
| 342            | N PMN           | 360         | 454        |                     |          |
| 343            | N PMN           | 362         | 420        |                     |          |
| 344            | N PMN           | 378         | 500        |                     |          |
| 345            | N PMN           | 399         | 580        |                     |          |
| 346            | N PMN           | 359         | 446        |                     |          |
| 347            | N PMN           | 359         | 434        |                     |          |
| 348            | NP              | 674         | 2618       | Y-floy 16288        |          |
| 349            | NP              | 541         | 1194       | Y-floy 16289        |          |
| 350            | NP              | 624         | 1674       | Y-floy 16290        |          |
| 351            | NP              | 711         | 2688       | Y-floy 16291        |          |
| 352            | NP              | 536         | 1144       | Y-floy 16292        |          |
| 353            | NP              | 676         | 2090       | Y-floy 16293        |          |
| 354            | NP              | 290         | 170        | Y-floy 16294        |          |
| 355            | RB              | 313         | 274        | 985121027393686     | AD Clip  |
| 356            | RB              | 380         | 500        | 985121021907632     | AD Clip  |
| 357            | RB              | 388         | 634        | 985121027406162     | AD Clip  |
| 358            | RB              | 213         | 106        | 985121027379244     | AD Clip  |
| 359            | RB              | 306         | 306        | 985121027385478     | AD Clip  |
| 360            | RB              | 282         | 232        | 985121027369963     | AD Clip  |
| 361            | RB              | 417         | 502        | 985121027396765     | AD Clip  |

| Capture<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy ID | Comments  |
|----------------|-----------------|----------------|------------|---------------------|-----------|
| 362            | RB              | 310            | 312        | 985121027385478     | Recapture |
| 363            | RB              | 260            | 180        | 985121021881882     | AD Clip   |
| 364            | RB              | 208            | 88         | 985121023458663     | AD Clip   |
| 365            | RS SH           | 115            | 6          |                     |           |
| 366            | RS SH           | 86             | 2          |                     |           |
| 367            | RS SH           | 115            | 12         |                     |           |
| 368            | RS SH           | 116            | 6          |                     |           |
| 369            | RS SH           | 93             |            |                     |           |
| 370            | RS SH           | 125            | 8          |                     |           |
| 371            | RS SH           | 111            | 6          |                     |           |
| 372            | RS SH           | 118            | 18         |                     |           |
| 373            | RS SH           | 125            | 22         |                     |           |
| 374            | SMB             | 200            | 94         |                     |           |
| 375            | SMB             | 330            | 558        | Y-floy 16287        |           |
| 376            | SMB             | 196            | 94         |                     |           |
| 377            | SMB             | 186            | 84         |                     |           |
| 378            | SMB             | 102            | 14         |                     |           |
| 379            | SMB             | 138            | 58         |                     |           |
| 380            | WCT             | 217            | 118        | 985121021885939     | AD Clip   |
| 381            | WCT             | 249            | 150        | 985121027360342     | AD Clip   |
| 382            | RBxWCT          | 321            | 330        | 985121021894178     | AD Clip   |
| 383            | YP              | 148            | 34         |                     |           |

## 2011 Clark Fork River Electrofishing from Paradise to Plains, River Right

Sampling Date 10/20/2011 Duration (sec) 6532

Water Temp. 8.9°C

Data Collectors: BM, JS, HC Latitude N.47.38315 Longitude W.114.79919

Table B-6. Data collection during 2011 electrofishing in the Clark Fork River from

Paradise to Plains, river right,

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 1           | RB              | 275         | 220        |                     |          |
| 2           | RB              | 231         | 126        |                     |          |
| 3           | RB              | 196         | 94         |                     |          |
| 4           | RB              | 232         | 142        |                     |          |
| 5           | RB              | 184         | 90         |                     |          |
| 6           | RB              | 202         | 94         |                     |          |
| 7           | WCT             | 220         | 106        |                     |          |
| 8           | RB              | 213         | 94         |                     |          |
| 9           | LL              | 185         | 64         |                     |          |
| 10          | WCT             | 265         | 218        |                     |          |
| 11          | RB              | 222         | 114        |                     |          |
| 12          | RB              | 265         | 180        |                     |          |
| 13          | LL              | 212         | 84         |                     |          |
| 14          | RB              | 192         | 66         |                     |          |
| 15          | RB              | 185         | 60         |                     |          |
| 16          | LL              | 175         | 48         |                     |          |
| 17          | YP              | 211         | 116        |                     |          |
| 18          | N PMN           | 265         | 146        |                     |          |
| 19          | N PMN           | 386         | 558        |                     |          |
| 20          | N PMN           | 465         | 980        |                     |          |
| 21          | N PMN           | 185         | 52         |                     |          |
| 22          | LC SU           | 415         | 746        |                     |          |
| 23          | LC SU           | 272         | 208        |                     |          |
| 24          | LC SU           | 200         | 64         |                     |          |
| 25          | LC SU           | 152         | 34         |                     |          |
| 26          | LC SU           | 150         | 30         |                     |          |
| 27          | LC SU           | 162         | 40         |                     |          |
| 28          | LC SU           | 125         | 22         |                     |          |
| 29          | LC SU           | 235         | 126        |                     |          |
| 30          | LC SU           | 171         | 54         |                     |          |
| 31          | LC SU           | 175         | 44         |                     |          |
| 32          | LC SU           | 130         | 18         |                     |          |
| 33          | SMB             | 342         | 624        |                     |          |
| 34          | RS SH           | 105         | 12         |                     |          |
| 35          | RS SH           | 95          | 8          |                     |          |
| 36          | RS SH           | 100         | 10         |                     |          |
| 37          | RS SH           | 112         | 16         |                     |          |

| Capture No.      | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|------------------|-----------------|-------------|------------|---------------------|----------|
| 38               | RS SH           | 110         | 10         |                     |          |
| 39               | RS SH           | 100         | 8          |                     |          |
| 40               | RS SH           | 108         | 8          |                     |          |
| 41               | RS SH           | 85          | 4          |                     |          |
| 42               | RB              | 237         | 140        |                     |          |
| 43               | RB              | 228         | 150        |                     |          |
| 44               | RB              | 240         | 142        |                     |          |
| 45               | RB              | 205         | 90         |                     |          |
| 46               | RB              | 179         | 80         |                     |          |
| 47               | RB              | 227         | 134        |                     |          |
| 48               | RB              | 191         | 74         |                     |          |
| 49               | RB              | 200         | 90         |                     |          |
| 50               | RB              | 238         | 130        |                     |          |
| 51               | RB              | 236         | 132        |                     |          |
| 52               | RB              | 207         | 84         |                     |          |
| 53               | RB              | 207         | 86         |                     |          |
| 54               | RB              | 251         | 154        |                     |          |
| 55               | RB              | 216         | 106        |                     |          |
| 56               | RB              | 216         | 100        |                     |          |
| 57               | RB              | 256         | 156        |                     |          |
| 58               | LL              | 177         | 52         |                     |          |
| 59               | RB              | 201         | 92         |                     |          |
| 60               | RB              | 217         | 106        |                     |          |
| 61               | RB              | 260         | 184        |                     |          |
| 62               | WCT             | 222         | 110        |                     |          |
| 63               | WCT             | 246         | 152        |                     |          |
| 64               | N PMN           | 387         | 476        |                     |          |
| 65               | N PMN           |             |            |                     |          |
| 66               |                 | 200<br>212  | 68<br>76   |                     |          |
|                  | N PMN           | +           |            |                     |          |
| 67               | N PMN           | 183         | 50         |                     |          |
| 68               | N PMN           | 190         | 58         |                     |          |
| 69<br><b>7</b> 0 | N PMN           | 362         | 386        |                     |          |
| 70               | N PMN           | 365         | 500        |                     |          |
| 71               | N PMN           | 210         | 78         |                     |          |
| 72               | N PMN           | 162         | 34         |                     |          |
| 73               | N PMN           | 150         | 24         |                     |          |
| 74               | N PMN           | 158         | 30         |                     |          |
| 75<br><b>-</b>   | N PMN           | 165         | 34         |                     |          |
| 76               | N PMN           | 213         | 72         |                     |          |
| 77               | N PMN           | 144         | 28         |                     |          |
| 78               | MWF             | 321         | 334        |                     |          |
| 79               | MWF             | 195         | 60         |                     |          |
| 80               | MWF             | 148         | 24         |                     |          |
| 81               | LC SU           | 231         | 132        |                     |          |

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 82          | LC SU           | 198         | 76         |                     |          |
| 83          | LC SU           | 145         | 28         |                     |          |
| 84          | MWF             | 105         | 8          |                     |          |
| 85          | MWF             | 121         | 10         |                     |          |
| 86          | MWF             | 110         | 10         |                     |          |
| 87          | LC SU           | 125         | 18         |                     |          |
| 88          | MWF             | 98          | 6          |                     |          |
| 89          | LL              | 95          | 4          |                     |          |
| 90          | RS SH           | 105         | 10         |                     |          |
| 91          | RS SH           | 100         | 4          |                     |          |
| 92          | RS SH           | 112         | 8          |                     |          |
| 93          | RS SH           | 110         | 6          |                     |          |
| 94          | RS SH           | 93          | 2          |                     |          |
| 95          | RB              | 222         | 108        |                     |          |
| 96          | RB              | 222         | 120        |                     |          |
| 97          | RB              | 190         | 76         |                     |          |
| 98          | RB              | 233         | 148        |                     |          |
| 99          | RB              | 228         | 126        |                     |          |
| 100         | RB              | 192         | 86         |                     |          |
| 101         | RB              | 210         | 106        |                     |          |
| 102         | WCT             | 210         | 98         |                     |          |
| 103         | LL              | 177         | 50         |                     |          |
| 104         | N PMN           | 550         | 1666       |                     |          |
| 105         | LC SU           | 502         | 1256       |                     |          |
| 106         | LC SU           | 380         | 612        |                     |          |
| 107         | LC SU           | 550         | 1478       |                     |          |
| 108         | N PMN           | 408         | 650        |                     |          |
| 109         | N PMN           | 315         | 286        |                     |          |
| 110         | N PMN           | 372         | 504        |                     |          |
| 111         | N PMN           | 332         | 298        |                     |          |
| 112         | N PMN           | 412         | 748        |                     |          |
| 113         | N PMN           | 292         | 200        |                     |          |
| 114         | N PMN           | 242         | 118        |                     |          |
| 115         | N PMN           | 367         | 454        |                     |          |
| 116         | RB              | 225         | 106        |                     |          |
| 117         | WCT             | 240         | 144        |                     |          |
| 118         | RB              | 213         | 104        |                     |          |
| 119         | LC SU           | 287         | 250        |                     |          |
| 120         | LC SU           | 267         | 226        |                     |          |
| 121         | LC SU           | 250         | 156        |                     |          |
| 122         | LC SU           | 244         | 138        |                     |          |
| 123         | RB              | 205         | 98         |                     |          |
| 124         | LC SU           | 222         | 98         |                     |          |
| 125         | MWF             | 243         | 112        |                     |          |

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 126         | MWF             | 230         | 108        |                     |          |
| 127         | MWF             | 217         | 78         |                     |          |
| 128         | RB              | 200         | 82         |                     |          |
| 129         | MWF             | 215         | 84         |                     |          |
| 130         | N PMN           | 252         | 132        |                     |          |
| 131         | N PMN           | 175         | 40         |                     |          |
| 132         | N PMN           | 177         | 42         |                     |          |
| 133         | N PMN           | 183         | 46         |                     |          |
| 134         | N PMN           | 155         | 30         |                     |          |
| 135         | N PMN           | 153         | 26         |                     |          |
| 136         | N PMN           | 157         | 28         |                     |          |
| 137         | N PMN           | 155         | 26         |                     |          |
| 138         | N PMN           | 147         | 22         |                     |          |
| 139         | LC SU           | 210         | 90         |                     |          |
| 140         | RB              | 207         | 106        |                     |          |
| 141         | LL              | 210         | 86         |                     |          |
| 142         | LC SU           | 170         | 40         |                     |          |
| 143         | LC SU           | 170         | 42         |                     |          |
| 144         | LC SU           | 157         | 36         |                     |          |
| 145         | MWF             | 143         | 20         |                     |          |
| 146         | N PMN           | 125         | 14         |                     |          |
| 147         | N PMN           | 152         | 24         |                     |          |
| 148         | MWF             | 122         | 12         |                     |          |
| 149         | N PMN           | 152         | 24         |                     |          |
| 150         | N PMN           | 134         | 16         |                     |          |
| 151         | MWF             | 137         | 14         |                     |          |
| 152         | LC SU           | 148         | 24         |                     |          |
| 153         | RS SH           | 115         | 8          |                     |          |
| 154         | RS SH           | 113         | 12         |                     |          |
| 155         | RS SH           | 120         | 14         |                     |          |
| 156         | MWF             | 347         | 374        |                     |          |
| 157         | MWF             | 462         | 820        |                     |          |
| 157         | RB              | 197         | 88         |                     |          |
| 159         | WCT             | 240         | 124        |                     |          |
| 160         | RB              | 231         | 140        |                     |          |
|             | RB              | 197         | 80         |                     |          |
| 161<br>162  | WCT             | 221         | 118        |                     |          |
| 163         | LL              | 187         | 68         |                     |          |
|             |                 | +           |            |                     |          |
| 164         | RB              | 235         | 134        |                     |          |
| 165         | RB              | 230         | 122        |                     |          |
| 166         | RB              | 212         | 112        |                     |          |
| 167         | RB              | 232         | 132        |                     |          |
| 168         | RB              | 196         | 82         |                     |          |
| 169         | RBxWCT          | 372         | 510        |                     |          |

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 170         | RB              | 237         | 142        |                     |          |
| 171         | LL              | 200         | 68         |                     |          |
| 172         | RB              | 170         | 64         |                     |          |
| 173         | RB              | 202         | 86         |                     |          |
| 174         | RB              | 210         | 90         |                     |          |
| 175         | RB              | 227         | 134        |                     |          |
| 176         | N PMN           | 337         | 318        |                     |          |
| 177         | N PMN           | 352         | 364        |                     |          |
| 178         | N PMN           | 202         | 68         |                     |          |
| 179         | N PMN           | 181         | 44         |                     |          |
| 180         | N PMN           | 182         | 38         |                     |          |
| 181         | N PMN           | 247         | 118        |                     |          |
| 182         | N PMN           | 282         | 144        |                     |          |
| 183         | MWF             | 280         | 170        |                     |          |
| 184         | MWF             | 227         | 84         |                     |          |
| 185         | MWF             | 222         | 70         |                     |          |
| 186         | MWF             | 120         | 10         |                     |          |
| 187         | N PMN           | 151         | 24         |                     |          |
| 188         | N PMN           | 170         | 34         |                     |          |
| 189         | N PMN           | 460         | 892        |                     |          |
| 190         | N PMN           | 187         | 50         |                     |          |
| 191         | N PMN           | 212         | 74         |                     |          |
| 192         | N PMN           | 207         | 66         |                     |          |
| 193         | RB              | 213         | 102        |                     |          |
| 194         | WCT             | 231         | 146        |                     |          |
| 195         | RB              | 200         | 84         |                     |          |
| 196         | LC SU           | 470         | 876        |                     |          |
| 197         | LC SU           | 265         | 206        |                     |          |
| 198         | LC SU           | 242         | 142        |                     |          |
| 199         | MWF             | 175         | 58         |                     |          |
| 200         | MWF             | 207         | 82         |                     |          |
| 201         | LC SU           | 232         | 138        |                     |          |
| 202         | N PMN           | 188         | 60         |                     |          |
| 203         | N PMN           | 125         | 16         |                     |          |
| 204         | N PMN           | 147         | 26         |                     |          |
| 205         | LC SU           | 170         | 42         |                     |          |
| 206         | LC SU           | 232         | 148        |                     |          |
| 207         | LC SU           | 191         | 60         |                     |          |
| 208         | LC SU           | 180         | 52         |                     |          |
| 209         | LC SU           | 175         | 54         |                     |          |
| 210         | LC SU           | 207         | 90         |                     |          |
| 211         | LC SU           | 177         | 54         |                     |          |
| 212         | LC SU           | 163         | 42         |                     |          |
| 213         | MWF             | 120         | 16         |                     |          |

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 214         | LC SU           | 167         | 50         |                     |          |
| 215         | LC SU           | 154         | 32         |                     |          |
| 216         | N PMN           | 155         | 26         |                     |          |
| 217         | N PMN           | 185         | 36         |                     |          |
| 218         | N PMN           | 183         | 42         |                     |          |
| 219         | N PMN           | 177         | 38         |                     |          |
| 220         | LC SU           | 167         | 44         |                     |          |
| 221         | LC SU           | 149         | 28         |                     |          |
| 222         | LC SU           | 195         | 76         |                     |          |
| 223         | RS SH           | 115         | 12         |                     |          |
| 224         | SMB             | 80          | 6          |                     |          |
| 225         | SMB             | 53          | 2          |                     |          |
| 226         | RS SH           | 123         | 14         |                     |          |
| 227         | RS SH           | 123         | 12         |                     |          |
| 228         | RS SH           | 112         | 12         |                     |          |
| 229         | RS SH           | 90          | 6          |                     |          |
| 230         | RS SH           | 140         | 24         |                     |          |
| 231         | N PMN           | 140         | 16         |                     |          |
| 232         | MWF             | 372         | 482        |                     |          |
| 233         | RB              | 459         | 868        |                     |          |
| 234         | WCT             | 250         | 134        |                     |          |
| 235         | WCT             | 208         | 80         |                     |          |
| 236         | WCT             | 225         | 102        |                     |          |
| 237         | LL              | 217         | 88         |                     |          |
| 238         | LL              | 212         | 102        |                     |          |
| 239         | RB              | 240         | 160        |                     |          |
| 240         | RB              | 250         | 162        |                     |          |
| 241         | RB              | 227         | 132        |                     |          |
| 242         | RB              | 230         | 120        |                     |          |
| 243         | RB              | 246         | 150        |                     |          |
| 244         | RB              | 215         | 102        |                     |          |
| 245         | NP              | 310         | 170        |                     |          |
| 246         | N PMN           | 352         | 376        |                     |          |
| 247         | N PMN           | 310         | 238        |                     |          |
| 248         | MWF             | 220         | 84         |                     |          |
| 249         | RB              | 212         | 76         |                     |          |
| 250         | RB              | 214         | 118        |                     |          |
| 251         | LL              | 228         | 106        |                     |          |
| 252         | LC SU           | 228         | 114        |                     |          |
| 253         | LC SU           | 160         | 40         |                     |          |
| 254         | LC SU           | 285         | 242        |                     |          |
| 255         | LC SU           | 202         | 96         |                     |          |
| 256         | LC SU           | 171         | 38         |                     |          |
| 257         | LC SU           | 150         | 24         |                     |          |

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 258         | MWF             | 123         | 12         |                     |          |
| 259         | RS SH           | 115         | 12         |                     |          |
| 260         | RS SH           | 105         | 8          |                     |          |
| 261         | RB              | 200         | 76         |                     |          |
| 262         | LC SU           | 175         | 42         |                     |          |
| 263         | LC SU           | 192         | 68         |                     |          |
| 264         | LC SU           | 250         | 174        |                     |          |
| 265         | LC SU           | 195         | 66         |                     |          |
| 266         | LC SU           | 162         | 34         |                     |          |
| 267         | MWF             | 120         | 10         |                     |          |
| 268         | N PMN           | 142         | 22         |                     |          |
| 269         | N PMN           | 180         | 40         |                     |          |
| 270         | RS SH           | 93          | 4          |                     |          |
| 271         | LC SU           | 210         | 94         |                     |          |
| 272         | LC SU           | 157         | 28         |                     |          |
| 273         | LC SU           | 196         | 62         |                     |          |
| 274         | LC SU           | 250         | 138        |                     |          |
| 275         | LC SU           | 208         | 76         |                     |          |
| 276         | LC SU           | 152         | 26         |                     |          |
| 277         | LC SU           | 71          | 44         |                     |          |
| 278         | N PMN           | 134         | 16         |                     |          |
| 279         | N PMN           | 182         | 46         |                     |          |
| 280         | N PMN           | 157         | 26         |                     |          |
| 281         | N PMN           | 210         | 64         |                     |          |
| 282         | PEA             | 395         | 600        |                     |          |
| 283         | LC SU           | 162         | 34         |                     |          |
| 284         | LC SU           | 172         | 44         |                     |          |
| 285         | LC SU           | 300         | 278        |                     |          |
| 286         | LC SU           | 150         | 22         |                     |          |
| 287         | LC SU           | 152         | 28         |                     |          |
| 288         | N PMN           | 140         | 14         |                     |          |
| 289         | N PMN           | 202         | 64         |                     |          |
| 290         | N PMN           | 285         | 172        |                     |          |
| 291         | N PMN           | 137         | 16         |                     |          |
| 292         | N PMN           | 215         | 70         |                     |          |
| 293         | LC SU           | 157         | 34         |                     |          |
| 294         | LC SU           | 125         | 14         |                     |          |
| 295         | LC SU           | 192         | 74         |                     |          |
| 296         | LC SU           | 165         | 40         |                     |          |
| 297         | LC SU           | 151         | 30         |                     |          |
| 298         | LC SU           | 170         | 46         |                     |          |
| 299         | LC SU           | 157         | 36         |                     |          |
| 300         | RS SH           | 100         | 8          |                     |          |
| 301         | RS SH           | 132         | 18         |                     |          |

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 302         | RS SH           | 132         | 20         |                     |          |
| 303         | N PMN           | 185         | 46         |                     |          |
| 304         | N PMN           | 180         | 44         |                     |          |
| 305         | N PMN           | 171         | 36         |                     |          |
| 306         | MWF             | 112         | 6          |                     |          |
| 307         | MWF             | 125         | 16         |                     |          |
| 308         | LC SU           | 147         | 28         |                     |          |
| 309         | LC SU           | 225         | 112        |                     |          |
| 310         | LC SU           | 225         | 104        |                     |          |
| 311         | LC SU           | 141         | 28         |                     |          |
| 312         | LC SU           | 172         | 50         |                     |          |
| 313         | LC SU           | 146         | 30         |                     |          |
| 314         | RS SH           | 113         | 12         |                     |          |
| 315         | N PMN           | 252         | 126        |                     |          |
| 316         | N PMN           | 163         | 32         |                     |          |
| 317         | N PMN           | 140         | 18         |                     |          |
| 318         | N PMN           | 142         | 22         |                     |          |
| 319         | N PMN           | 144         | 20         |                     |          |
| 320         | N PMN           | 127         | 18         |                     |          |
| 321         | N PMN           | 148         | 22         |                     |          |
| 322         | MWF             | 130         | 14         |                     |          |
| 323         | LC SU           | 151         | 30         |                     |          |
| 324         | LC SU           | 167         | 44         |                     |          |
| 325         | LC SU           | 161         | 34         |                     |          |
| 326         | LC SU           | 192         | 62         |                     |          |
| 327         | RS SH           | 132         | 18         |                     |          |
| 328         | RS SH           | 102         | 10         |                     |          |
| 329         | N PMN           | 185         | 46         |                     |          |
| 330         | N PMN           | 130         | 14         |                     |          |
| 331         | LC SU           | 150         | 28         |                     |          |
| 332         | LC SU           | 180         | 52         |                     |          |
| 333         | LC SU           | 162         | 34         |                     |          |
| 334         | LC SU           | 165         | 38         |                     |          |
| 335         | N PMN           | 127         | 10         |                     |          |
| 336         | MWF             | 110         | 10         |                     |          |
| 337         | RS SH           | 138         | 20         |                     |          |
| 338         | RS SH           | 110         | 6          |                     |          |
| 339         | RS SH           | 105         | 2          |                     |          |
| 340         | RS SH           | 120         | 10         |                     |          |
| 341         | RS SH           | 100         | 4          |                     |          |
| 342         | SMB             | 60          | 2          |                     |          |
| 343         | RS SH           | 105         | 10         |                     |          |
| 344         | RS SH           | 121         | 14         |                     |          |
| 345         | RS SH           | 123         | 16         |                     |          |

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 346         | RS SH           | 87          | 6          |                     |          |
| 347         | RS SH           | 113         | 12         |                     |          |
| 348         | MWF             | 269         | 172        |                     |          |
| 349         | MWF             | 320         | 298        |                     |          |
| 350         | MWF             | 316         | 262        |                     |          |
| 351         | MWF             | 343         | 414        |                     |          |
| 352         | MWF             | 127         | 18         |                     |          |
| 353         | MWF             | 113         | 12         |                     |          |
| 354         | MWF             | 194         | 82         |                     |          |
| 355         | MWF             | 233         | 96         |                     |          |
| 356         | MWF             | 229         | 96         |                     |          |
| 357         | MWF             | 137         | 18         |                     |          |
| 358         | RB              | 238         | 136        |                     |          |
| 359         | MWF             | 333         | 300        |                     |          |
| 360         | LL              | 201         | 74         |                     |          |
| 361         | RB              | 197         | 80         |                     |          |
| 362         | MWF             | 111         | 8          |                     |          |
| 363         | LC SU           | 350         | 426        |                     |          |
| 364         | LC SU           | 553         | 1700       |                     |          |
| 365         | RB              | 238         | 154        |                     |          |
| 366         | LC SU           | 365         | 510        |                     |          |
| 367         | RB              | 207         | 88         |                     |          |
| 368         | RB              | 229         | 120        |                     |          |
| 369         | MWF             | 121         | 14         |                     |          |
| 370         | LC SU           | 434         | 804        |                     |          |
| 371         | MWF             | 103         | 8          |                     |          |
| 372         | LC SU           | 518         | 1356       |                     |          |
| 373         | N PMN           | 444         | 790        |                     |          |
| 374         | N PMN           | 406         | 622        |                     |          |
| 375         | MWF             | 260         | 158        |                     |          |
| 376         | MWF             | 278         | 162        |                     |          |
| 377         | MWF             | 277         | 180        |                     |          |
| 378         | MWF             | 245         | 120        |                     |          |
| 379         | MWF             | 263         | 168        |                     |          |
| 380         | MWF             | 224         | 96         |                     |          |
| 381         | MWF             | 377         | 434        |                     |          |
| 382         | MWF             | 223         | 114        |                     |          |
| 383         | N PMN           | 377         | 498        |                     |          |
| 384         | N PMN           | 436         | 844        |                     |          |
| 385         | RB              | 252         | 152        |                     |          |
| 386         | RB              | 250         | 164        |                     |          |
| 387         | RB              | 234         | 112        |                     |          |
| 388         | MWF             | 285         | 190        |                     |          |
| 389         | MWF             | 257         | 164        |                     |          |

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 390         | LL              | 214         | 90         |                     |          |
| 391         | MWF             | 145         | 24         |                     |          |
| 392         | RB              | 247         | 136        |                     |          |
| 393         | MWF             | 114         | 14         |                     |          |
| 394         | MWF             | 244         | 116        |                     |          |
| 395         | MWF             | 213         | 74         |                     |          |
| 396         | MWF             | 121         | 14         |                     |          |
| 397         | LC SU           | 543         | 1776       |                     |          |
| 398         | N PMN           | 493         | 1246       |                     |          |
| 399         | N PMN           | 446         | 882        |                     |          |
| 400         | N PMN           | 378         | 530        |                     |          |
| 401         | LC SU           | 540         | 1292       |                     |          |
| 402         | RB              | 257         | 158        |                     |          |
| 403         | LL              | 383         | 550        |                     |          |
| 404         | RB              | 260         | 160        |                     |          |
| 405         | RB              | 245         | 134        |                     |          |
| 406         | MWF             | 278         | 152        |                     |          |
| 407         | MWF             | 289         | 194        |                     |          |
| 408         | MWF             | 368         | 422        |                     |          |
| 409         | MWF             | 363         | 370        |                     |          |
| 410         | MWF             | 211         | 74         |                     |          |
| 411         | MWF             | 231         | 92         |                     |          |
| 412         | MWF             | 226         | 90         |                     |          |
| 413         | MWF             | 223         | 100        |                     |          |
| 414         | WCT             | 240         | 134        |                     |          |
| 415         | RB              | 231         | 136        |                     |          |
| 416         | MWF             | 290         | 184        |                     |          |
| 417         | RB              | 160         | 40         |                     |          |
| 418         | LL              | 213         | 102        |                     |          |
| 419         | MWF             | 208         | 70         |                     |          |
| 420         | MWF             | 111         | 10         |                     |          |
| 421         | LC SU           | 444         | 930        |                     |          |
| 422         | RB              | 247         | 134        |                     |          |
| 423         | LC SU           | 277         | 188        |                     |          |
| 424         | RB              | 200         | 78         |                     |          |
| 425         | RB              | 250         | 160        |                     |          |
| 426         | MWF             | 151         | 22         |                     |          |
| 427         | MWF             | 124         | 12         |                     |          |
| 428         | N PMN           | 198         | 54         |                     |          |
| 429         | LC SU           | 479         | 846        |                     |          |
| 430         | LC SU           | 462         | 1024       |                     |          |
| 431         | MWF             | 391         | 528        |                     |          |
| 432         | MWF             | 219         | 94         |                     |          |
| 433         | MWF             | 212         | 82         |                     |          |

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 434         | RB              | 191         | 84         |                     |          |
| 435         | MWF             | 213         | 76         |                     |          |
| 436         | MWF             | 304         | 222        |                     |          |
| 437         | MWF             | 348         | 378        |                     |          |
| 438         | RB              | 213         | 86         |                     |          |
| 439         | MWF             | 248         | 150        |                     |          |
| 440         | MWF             | 307         | 230        |                     |          |
| 441         | MWF             | 196         | 62         |                     |          |
| 442         | MWF             | 131         | 16         |                     |          |
| 443         | MWF             | 192         | 70         |                     |          |
| 444         | N PMN           | 438         | 870        |                     |          |
| 445         | N PMN           | 394         | 604        |                     |          |
| 446         | MWF             | 310         | 270        |                     |          |
| 447         | MWF             | 120         | 10         |                     |          |
| 448         | RB              | 193         | 76         |                     |          |
| 449         | MWF             | 112         | 8          |                     |          |
| 450         | LC SU           | 559         | 1606       |                     |          |
| 451         | MWF             | 348         | 396        |                     |          |
| 452         | MWF             | 229         | 96         |                     |          |
| 453         | LL              | 110         | 12         |                     |          |
| 454         | RB              | 218         | 96         |                     |          |
| 455         | RB              | 244         | 136        |                     |          |
| 456         | RB              | 146         | 20         |                     |          |
| 457         | MWF             | 217         | 76         |                     |          |
| 458         | MWF             | 380         | 426        |                     |          |
| 459         | RB              | 276         | 226        |                     |          |
| 460         | LC SU           | 310         | 316        |                     |          |
| 461         | MWF             | 268         | 166        |                     |          |
| 462         | MWF             | 407         | 578        |                     |          |
| 463         | LC SU           | 303         | 256        |                     |          |
| 464         | LC SU           | 432         | 828        |                     |          |
| 465         | LC SU           | 445         | 886        |                     |          |
| 466         | LC SU           | 485         | 1070       |                     |          |
| 467         | LC SU           | 404         | 752        |                     |          |
| 468         | LC SU           | 384         | 592        |                     |          |
| 469         | N PMN           | 353         | 410        |                     |          |
| 470         | MWF             | 3245        | 330        |                     |          |
| 471         | MWF             | 141         | 20         |                     |          |
| 472         | RB              | 207         | 96         |                     |          |
| 473         | MWF             | 114         | 6          |                     |          |
| 474         | MWF             | 112         | 6          |                     |          |
| 475         | MWF             | 108         | 8          |                     |          |
| 476         | MWF             | 436         | 678        |                     |          |
| 477         | MWF             | 390         | 472        |                     |          |

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 478         | MWF             | 451         | 770        |                     |          |
| 479         | MWF             | 196         | 70         |                     |          |
| 480         | RB              | 321         | 300        |                     |          |
| 481         | MWF             | 277         | 176        |                     |          |
| 482         | LC SU           | 535         | 1462       |                     |          |
| 483         | LC SU           | 528         | 1208       |                     |          |
| 484         | N PMN           | 379         | 468        |                     |          |
| 485         | N PMN           | 426         | 750        |                     |          |
| 486         | WCT             | 222         | 100        |                     |          |
| 487         | RB              | 241         | 136        |                     |          |
| 488         | N PMN           | 428         | 718        |                     |          |
| 489         | MWF             | 362         | 328        |                     |          |
| 490         | N PMN           | 336         | 330        |                     |          |
| 491         | WCT             | 376         | 528        |                     |          |
| 492         | RB              | 224         | 120        |                     |          |
| 493         | MWF             | 233         | 102        |                     |          |
| 494         | RB              | 187         | 60         |                     |          |
| 495         | MWF             | 221         | 88         |                     |          |
| 496         | MWF             | 211         | 66         |                     |          |
| 497         | MWF             | 192         | 54         |                     |          |
| 498         | MWF             | 241         | 112        |                     |          |
| 499         | MWF             | 129         | 16         |                     |          |
| 500         | MWF             | 122         | 14         |                     |          |
| 501         | MWF             | 127         | 14         |                     |          |
| 502         | MWF             | 112         | 8          |                     |          |
| 503         | MWF             | 220         | 90         |                     |          |
| 504         | MWF             | 186         | 52         |                     |          |
| 505         | MWF             | 111         | 10         |                     |          |
| 506         | MWF             | 122         | 12         |                     |          |
| 507         | RS SH           | 87          | 6          |                     |          |
| 508         | MWF             | 118         | 12         |                     |          |
| 509         | MWF             | 123         | 12         |                     |          |
| 510         | MWF             | 237         | 102        |                     |          |
| 511         | MWF             | 271         | 158        |                     |          |
| 512         | MWF             | 297         | 202        |                     |          |
| 513         | MWF             | 417         | 426        |                     |          |
| 514         | MWF             | 380         | 456        |                     |          |
| 515         | MWF             | 387         | 412        |                     |          |
| 516         | MWF             | 275         | 170        |                     |          |
| 517         | MWF             | 215         | 72         |                     |          |
| 518         | MWF             | 224         | 98         |                     |          |
| 519         | MWF             | 124         | 14         |                     |          |
| 520         | MWF             | 355         | 400        |                     |          |
| 521         | MWF             | 314         | 252        |                     |          |

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 522         | RB              | 223         | 128        |                     |          |
| 523         | RB              | 232         | 120        |                     |          |
| 524         | LC SU           | 297         | 318        |                     |          |
| 525         | LC SU           | 484         | 1006       |                     |          |
| 526         | MWF             | 138         | 20         |                     |          |
| 527         | MWF             | 121         | 12         |                     |          |
| 528         | RB              | 220         | 104        |                     |          |
| 529         | MWF             | 111         | 10         |                     |          |
| 530         | RB              | 220         | 114        |                     |          |
| 531         | RB              | 235         | 120        |                     |          |
| 532         | WCT             | 241         | 148        |                     |          |
| 533         | MWF             | 114         | 12         |                     |          |
| 534         | MWF             | 111         | 12         |                     |          |
| 535         | RB              | 226         | 116        |                     |          |
| 536         | MWF             | 132         | 16         |                     |          |
| 537         | MWF             | 139         | 18         |                     |          |
| 538         | MWF             | 142         | 22         |                     |          |
| 539         | MWF             | 113         | 10         |                     |          |
| 540         | MWF             | 121         | 12         |                     |          |
| 541         | MWF             | 112         | 10         |                     |          |
| 542         | MWF             | 110         | 10         |                     |          |
| 543         | MWF             | 121         | 12         |                     |          |
| 544         | MWF             | 214         | 86         |                     |          |
| 545         | LC SU           | 553         | 1732       |                     |          |
| 546         | MWF             | 134         | 16         |                     |          |
| 547         | MWF             | 362         | 414        |                     |          |
| 548         | RB              | 243         | 148        |                     |          |
| 549         | N PMN           | 355         | 414        |                     |          |
| 550         | WCT             | 262         | 200        |                     |          |
| 551         | RB              | 240         | 140        |                     |          |
| 552         | RB              | 276         | 216        |                     |          |
| 553         | MWF             | 390         | 584        |                     |          |
| 554         | N PMN           | 332         | 268        |                     |          |
| 555         | MWF             | 130         | 16         |                     |          |
| 556         | N PMN           | 194         | 54         |                     |          |
| 557         | RB              | 204         | 88         |                     |          |
| 558         | LC SU           | 376         | 482        |                     |          |
| 559         | LC SU           | 442         | 824        |                     |          |
| 560         | MWF             | 328         | 278        |                     |          |
| 561         | RB              | 229         | 112        |                     |          |
| 562         | MWF             | 291         | 176        |                     |          |
| 563         | LC SU           | 460         | 1024       |                     |          |
| 564         | LC SU           | 453         | 1004       |                     |          |
| 565         | LC SU           | 472         | 994        |                     |          |

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 566         | MWF             | 225         | 100        |                     |          |
| 567         | MWF             | 186         | 48         |                     |          |
| 568         | MWF             | 122         | 14         |                     |          |
| 569         | MWF             | 120         | 12         |                     |          |
| 570         | MWF             | 112         | 10         |                     |          |
| 571         | NP              | 489         | 834        | Y floy 16295        |          |
| 572         | MWF             | 339         | 382        | ,                   |          |
| 573         | MWF             | 199         | 62         |                     |          |
| 574         | MWF             | 255         | 164        |                     |          |
| 575         | MWF             | 330         | 284        |                     |          |
| 576         | MWF             | 226         | 96         |                     |          |
| 577         | RB              | 222         | 116        |                     |          |
| 578         | MWF             | 192         | 58         |                     |          |
| 579         | RB              | 247         | 132        |                     |          |
| 580         | MWF             | 268         | 158        |                     |          |
| 581         | LL              | 257         | 166        |                     |          |
| 582         | N PMN           | 324         | 274        |                     |          |
| 583         | RB              | 244         | 142        |                     |          |
| 584         | N PMN           | 228         | 84         |                     |          |
| 585         | MWF             | 424         | 536        |                     |          |
| 586         | MWF             | 220         | 86         |                     |          |
| 587         | MWF             | 132         | 18         |                     |          |
| 588         | MWF             | 219         | 66         |                     |          |
| 589         | MWF             | 296         | 210        |                     |          |
| 590         | MWF             | 129         | 18         |                     |          |
| 591         | RB              | 247         | 146        |                     |          |
| 592         | MWF             | 353         | 410        |                     |          |
| 593         | MWF             | 151         | 22         |                     |          |
| 594         | MWF             | 127         | 16         |                     |          |
| 595         | MWF             | 109         | 12         |                     |          |
| 596         | MWF             | 111         | 12         |                     |          |
| 597         | LC SU           | 573         | 1700       |                     |          |
| 598         | MWF             | 206         | 64         |                     |          |
| 599         | MWF             | 194         | 66         |                     |          |
| 600         | MWF             | 194         | 52         |                     |          |
| 601         | N PMN           | 390         | 532        |                     |          |
| 602         | LC SU           | 452         | 912        |                     |          |
| 603         | MWF             | 270         | 164        |                     |          |
| 604         | LC SU           | 304         | 302        |                     |          |
| 605         | N PMN           | 392         | 542        |                     |          |
| 606         | MWF             | 208         | 72         |                     |          |
| 607         | RB              | 214         | 94         |                     |          |
| 608         | MWF             | 198         | 56         |                     |          |
| 609         | N PMN           | 176         | 40         |                     |          |

| Capture No. | Species<br>Abbr | Length (mm) | Weight (g) | PIT Tag No./Floy ID | Comments |
|-------------|-----------------|-------------|------------|---------------------|----------|
| 610         | RB              | 249         | 144        |                     |          |
| 611         | MWF             | 227         | 96         |                     |          |
| 612         | MWF             | 310         | 234        |                     |          |
| 613         | LL              | 222         | 90         |                     |          |
| 614         | LL              | 214         | 86         |                     |          |
| 615         | MWF             | 209         | 74         |                     |          |
| 616         | LC SU           | 338         | 416        |                     |          |
| 617         | LL              | 221         | 102        |                     |          |
| 618         | MWF             | 118         | 14         |                     |          |
| 619         | MWF             | 121         | 12         |                     |          |
| 620         | MWF             | 113         | 10         |                     |          |
| 621         | MWF             | 122         | 12         |                     |          |
| 622         | MWF             | 224         | 86         |                     |          |
| 623         | SMB             | 78          | 6          |                     |          |
| 624         | MWF             | 104         | 8          |                     |          |
| 625         | MWF             | 132         | 16         |                     |          |
| 626         | MWF             | 120         | 12         |                     |          |
| 627         | MWF             | 125         | 12         |                     |          |
| 628         | LC SU           | 460         | 1012       |                     |          |
| 629         | LC SU           | 543         | 1456       |                     |          |

## 2011 Clark Fork River Electrofishing from Paradise to Plains, River Left

Sampling Date 10/21/2011 Duration (sec) 5950

Water Temp. 11.5°C

Data Collectors: BM, JS, HC Latitude N.47.38305 Longitude W.114.80017

Table B-7. Data collection during 2011 electrofishing in the Clark Fork River from Paradise to Plains, river left.

| Capture<br>No. | Species<br>Abbr | Length<br>(mm) | Weight<br>(g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|-----------------|----------------|---------------|------------------------|----------|
| 1              | N PMN           | 125            | 14            |                        |          |
| 2              | RB              | 238            | 122           |                        |          |
| 3              | N PMN           | 192            | 54            |                        |          |
| 4              | SMB             | 181            | 90            |                        |          |
| 5              | LC SU           | 427            | 918           |                        |          |
| 6              | MWF             | 385            | 398           |                        |          |
| 7              | MWF             | 262            | 154           |                        |          |
| 8              | LC SU           | 205            | 90            |                        |          |
| 9              | LC SU           | 290            | 270           |                        |          |
| 10             | N PMN           | 498            | 1324          |                        |          |
| 11             | LC SU           | 538            | 1492          |                        |          |
| 12             | N PMN           | 147            | 20            |                        |          |
| 13             | RB              | 245            | 140           |                        |          |
| 14             | N PMN           | 136            | 12            |                        |          |
| 15             | N PMN           | 187            | 38            |                        |          |
| 16             | YP              | 165            | 60            |                        |          |
| 17             | N PMN           | 514            | 1372          |                        |          |
| 18             | N PMN           | 505            | 1216          |                        |          |
| 19             | LC SU           | 495            | 1360          |                        |          |
| 20             | LC SU           | 437            | 856           |                        |          |
| 21             | RB              | 175            | 62            |                        |          |
| 22             | LC SU           | 285            | 228           |                        |          |
| 23             | N PMN           | 275            | 186           |                        |          |
| 24             | LC SU           | 507            | 1318          |                        |          |
| 25             | N PMN           | 227            | 76            |                        |          |
| 26             | N PMN           | 135            | 18            |                        |          |
| 27             | N PMN           | 202            | 60            |                        |          |
| 28             | MWF             | 112            | 10            |                        |          |
| 29             | LC SU           | 333            | 344           |                        |          |
| 30             | LC SU           | 272            | 222           |                        |          |
| 31             | LC SU           | 272            | 226           |                        |          |
| 32             | N PMN           | 470            | 1016          |                        |          |
| 33             | RB              | 182            | 68            |                        |          |
| 34             | N PMN           | 530            | 424           |                        |          |
| 35             | N PMN           | 227            | 90            |                        |          |
| 36             | N PMN           | 3131           | 16            |                        |          |
| 37             | YP              | 47             | 34            |                        |          |

| No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|-----|-----------------|----------------|------------|------------------------|----------|
| 38  | LC SU           | 157            | 38         |                        |          |
| 39  | N PMN           | 182            | 48         |                        |          |
| 40  | LC SU           | 212            | 88         |                        |          |
| 41  | N PMN           | 192            | 60         |                        |          |
| 42  | N PMN           | 155            | 26         |                        |          |
| 43  | N PMN           | 128            | 18         |                        |          |
| 44  | RB              | 222            | 114        |                        |          |
| 45  | MWF             | 320            | 270        |                        |          |
| 46  | WCT             | 215            | 102        |                        |          |
| 47  | N PMN           | 135            | 16         |                        |          |
| 48  | N PMN           | 320            | 282        |                        |          |
| 49  | LC SU           | 280            | 220        |                        |          |
| 50  | MWF             | 375            | 500        |                        |          |
| 51  | N PMN           | 312            | 280        |                        |          |
| 52  | WCT             | 283            | 106        |                        |          |
| 53  | N PMN           | 256            | 134        |                        |          |
| 54  | N PMN           | 312            | 262        |                        |          |
| 55  | N PMN           | 288            | 198        |                        |          |
| 56  | N PMN           | 325            | 266        |                        |          |
| 57  | RB              | 212            | 94         |                        |          |
| 58  | N PMN           | 420            | 654        |                        |          |
| 59  | N PMN           | 182            | 48         |                        |          |
| 60  | N PMN           | 158            | 36         |                        |          |
| 61  | N PMN           | 191            | 52         |                        |          |
| 62  | MWF             | 272            | 156        |                        |          |
| 63  | N PMN           | 150            | 22         |                        |          |
| 64  | N PMN           | 141            | 18         |                        |          |
| 65  | N PMN           | 185            | 44         |                        |          |
| 66  | N PMN           | 182            | 48         |                        |          |
| 67  | N PMN           | 151            | 22         |                        |          |
| 68  | N PMN           | 160            | 28         |                        |          |
| 69  | N PMN           | 157            | 24         |                        |          |
| 70  | N PMN           | 141            | 20         |                        |          |
| 71  | N PMN           | 168            | 34         |                        |          |
| 72  | N PMN           | 377            | 494        |                        |          |
| 73  | N PMN           | 176            | 40         |                        |          |
| 74  | N PMN           | 162            | 36         |                        |          |
| 75  | N PMN           | 316            | 256        |                        |          |
| 76  | LC SU           | 296            | 280        |                        |          |
| 77  | LC SU           | 513            | 1054       |                        |          |
| 78  | LC SU           | 532            | 1496       |                        |          |
| 79  | LC SU           | 460            | 946        |                        |          |
| 80  | LC SU           | 403            | 630        |                        |          |
| 81  | LC SU           | 342            | 398        |                        |          |

| Capture<br>No. | Species<br>Abbr | Length<br>(mm) | Weight<br>(g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|-----------------|----------------|---------------|------------------------|----------|
| 82             | LC SU           | 214            | 102           |                        |          |
| 83             | LC SU           | 321            | 350           |                        |          |
| 84             | LC SU           | 273            | 216           |                        |          |
| 85             | LC SU           | 212            | 104           |                        |          |
| 86             | LC SU           | 231            | 118           |                        |          |
| 87             | N PMN           | 408            | 622           |                        |          |
| 88             | N PMN           | 197            | 66            |                        |          |
| 89             | RB              | 212            | 104           |                        |          |
| 90             | LC SU           | 262            | 210           |                        |          |
| 91             | LC SU           | 282            | 220           |                        |          |
| 92             | LN SU           | 170            | 52            |                        |          |
| 93             | LC SU           | 237            | 134           |                        |          |
| 94             | LC SU           | 230            | 118           |                        |          |
| 95             | LC SU           | 234            | 140           |                        |          |
| 96             | RB              | 223            | 116           |                        |          |
| 97             | RB              | 175            | 54            |                        |          |
| 98             | LC SU           | 232            | 132           |                        |          |
| 99             | MWF             | 272            | 72            |                        |          |
| 100            | YP              | 170            | 54            |                        |          |
| 101            | RB              | 210            | 94            |                        |          |
| 102            | LC SU           | 153            | 38            |                        |          |
| 103            | LC SU           | 102            | 10            |                        |          |
| 104            | MWF             | 126            | 12            |                        |          |
| 105            | RB              | 436            | 668           |                        |          |
| 106            | RBxWCT          | 402            | 542           |                        |          |
| 107            | RB              | 227            | 114           |                        |          |
| 108            | RB              | 255            | 174           |                        |          |
| 109            | RB              | 240            | 142           |                        |          |
| 110            | WCT             | 222            | 128           |                        |          |
| 111            | RB              | 235            | 130           |                        |          |
| 112            | RB              | 226            | 124           |                        |          |
| 113            | LC SU           | 235            | 116           |                        |          |
| 114            | N PMN           | 203            | 242           |                        |          |
| 115            | N PMN           | 300            | 236           |                        |          |
| 116            | N PMN           | 237            | 46            |                        |          |
| 117            | N PMN           | 312            | 240           |                        |          |
| 118            | N PMN           | 275            | 154           |                        |          |
| 119            | N PMN           | 355            | 366           |                        |          |
| 120            | RB              | 220            | 118           |                        |          |
| 121            | RB              | 218            | 108           |                        |          |
| 122            | MWF             | 202            | 74            |                        |          |
| 123            | MWF             | 280            | 220           |                        |          |
| 124            | RB              | 232            | 132           |                        |          |
| 125            | MWF             | 275            | 178           |                        |          |

| Capture<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|-----------------|----------------|------------|------------------------|----------|
| 126            | N PMN           | 402            | 620        |                        |          |
| 127            | N PMN           | 285            | 212        |                        |          |
| 128            | N PMN           | 147            | 48         |                        |          |
| 129            | N PMN           | 160            | 44         |                        |          |
| 130            | N PMN           | 151            | 36         |                        |          |
| 131            | N PMN           | 145            | 30         |                        |          |
| 132            | LC SU           | 312            | 282        |                        |          |
| 133            | LC SU           | 431            | 774        |                        |          |
| 134            | LC SU           | 350            | 454        |                        |          |
| 135            | LC SU           | 332            | 358        |                        |          |
| 136            | LC SU           | 320            | 320        |                        |          |
| 137            | LC SU           | 271            | 210        |                        |          |
| 138            | LC SU           | 296            | 246        |                        |          |
| 139            | LC SU           | 291            | 256        |                        |          |
| 140            | LC SU           | 312            | 302        |                        |          |
| 141            | LC SU           | 230            | 128        |                        |          |
| 142            | LC SU           | 252            | 172        |                        |          |
| 143            | LC SU           | 231            | 126        |                        |          |
| 144            | MWF             | 288            | 232        |                        |          |
| 145            | LC SU           | 231            | 148        |                        |          |
| 146            | LC SU           | 282            | 234        |                        |          |
| 147            | LC SU           | 233            | 130        |                        |          |
| 148            | LC SU           | 196            | 82         |                        |          |
| 149            | LC SU           | 235            | 122        |                        |          |
| 150            | LC SU           | 121            | 16         |                        |          |
| 151            | WCT             | 202            | 80         |                        |          |
| 152            | N PMN           | 138            | 22         |                        |          |
| 153            | N PMN           | 122            | 10         |                        |          |
| 154            | LC SU           | 469            | 1046       |                        |          |
| 155            | MWF             | 281            | 204        |                        |          |
| 156            | MWF             | 193            | 64         |                        |          |
| 157            | RB              | 223            | 122        |                        |          |
| 158            | RB              | 225            | 126        |                        |          |
| 159            | RB              | 231            | 130        |                        |          |
| 160            | RB              | 202            | 104        |                        |          |
| 161            | WCT             | 215            | 98         |                        |          |
| 162            | RB              | 201            | 80         |                        |          |
| 163            | N PMN           | 422            | 702        |                        |          |
| 164            | N PMN           | 218            | 80         |                        |          |
| 165            | N PMN           | 315            | 288        |                        |          |
| 166            | N PMN           | 277            | 170        |                        |          |
| 167            | N PMN           | 282            | 180        |                        |          |
| 168            | N PMN           | 182            | 46         |                        |          |
| 169            | N PMN           | 161            | 36         |                        |          |

| 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Capture<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|----------------|------------|------------------------|----------|
| 172         N PMN         180         52           173         N PMN         210         80           174         N PMN         130         26           175         N PMN         157         28           176         N PMN         441         874           177         N PMN         310         270           178         LC SU         275         200           179         LC SU         344         400           180         LC SU         311         314           181         LC SU         231         178           182         LC SU         263         178           183         LC SU         263         178           184         LC SU         263         178           183         LC SU         247         142           184         LC SU         165         40           185         YP         165         50           186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN <td< td=""><td>170</td><td>N PMN</td><td>165</td><td>40</td><td></td><td></td></td<> | 170            | N PMN           | 165            | 40         |                        |          |
| 173         N PMN         210         80           174         N PMN         130         26           175         N PMN         157         28           176         N PMN         441         874           177         N PMN         310         270           178         LC SU         275         200           179         LC SU         344         400           180         LC SU         311         314           181         LC SU         273         178           182         LC SU         263         178           183         LC SU         263         178           184         LC SU         263         178           185         YP         165         40           184         LC SU         263         178           185         YP         165         50           186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         14                                                                              | 171            | N PMN           | 302            | 274        |                        |          |
| 174         N PMN         130         26           175         N PMN         157         28           176         N PMN         441         874           177         N PMN         310         270           178         LC SU         275         200           179         LC SU         344         400           180         LC SU         311         314           181         LC SU         263         178           182         LC SU         263         178           183         LC SU         247         142           184         LC SU         165         40           185         YP         165         50           186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         145         24           191         N PMN         145         24           192         N PMN         150         24           194         N PMN         1                                                                              | 172            | N PMN           | 180            | 52         |                        |          |
| 175         N PMN         157         28           176         N PMN         441         874           177         N PMN         310         270           178         LC SU         275         200           179         LC SU         344         400           180         LC SU         311         314           181         LC SU         263         178           182         LC SU         263         178           183         LC SU         247         142           184         LC SU         165         40           185         YP         165         50           186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         203         66           191         N PMN         145         24           192         N PMN         150         24           194         N PMN         150         20           195         N PMN         3                                                                              | 173            | N PMN           | 210            | 80         |                        |          |
| 176         N PMN         441         874           177         N PMN         310         270           178         LC SU         275         200           179         LC SU         344         400           180         LC SU         311         314           181         LC SU         263         178           182         LC SU         263         178           183         LC SU         247         142           184         LC SU         245         40           185         YP         165         50           186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         145         24           192         N PMN         145         24           192         N PMN         150         20           193         N PMN         150         20           195         N PMN         172         44           196         N PMN         3                                                                              | 174            | N PMN           | 130            | 26         |                        |          |
| 177         N PMN         310         270           178         LC SU         275         200           179         LC SU         344         400           180         LC SU         311         314           181         LC SU         273         178           182         LC SU         263         178           183         LC SU         247         142           184         LC SU         165         40           185         YP         165         50           186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         147         22           190         N PMN         145         24           192         N PMN         116         14           193         N PMN         150         24           194         N PMN         150         20           195         N PMN         321         270           197         N PMN         3                                                                              | 175            | N PMN           | 157            | 28         |                        |          |
| 178         LC SU         275         200           179         LC SU         344         400           180         LC SU         311         314           181         LC SU         273         178           182         LC SU         263         178           183         LC SU         247         142           184         LC SU         165         40           185         YP         165         50           186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         145         24           191         N PMN         145         24           192         N PMN         116         14           193         N PMN         150         24           194         N PMN         150         20           195         N PMN         321         284           196         N PMN         321         284           198         N PMN         3                                                                              | 176            | N PMN           | 441            | 874        |                        |          |
| 179         LC SU         344         400           180         LC SU         311         314           181         LC SU         273         178           182         LC SU         263         178           183         LC SU         247         142           184         LC SU         165         40           185         YP         165         50           186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         147         22           190         N PMN         145         24           192         N PMN         116         14           193         N PMN         150         24           194         N PMN         150         24           195         N PMN         172         44           196         N PMN         321         284           198         N PMN         330         284           199         N PMN         33                                                                              | 177            | N PMN           | 310            | 270        |                        |          |
| 180         LC SU         311         314           181         LC SU         273         178           182         LC SU         263         178           183         LC SU         247         142           184         LC SU         165         40           185         YP         165         50           186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         203         66           191         N PMN         145         24           192         N PMN         116         14           193         N PMN         150         24           194         N PMN         150         20           195         N PMN         321         270           197         N PMN         321         284           198         N PMN         330         284           200         N PMN         20         54           201         N PMN         20<                                                                              | 178            | LC SU           | 275            | 200        |                        |          |
| 181         LC SU         273         178           182         LC SU         263         178           183         LC SU         247         142           184         LC SU         165         40           185         YP         165         50           186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         203         66           191         N PMN         145         24           192         N PMN         116         14           193         N PMN         150         24           194         N PMN         150         20           195         N PMN         321         270           197         N PMN         321         284           198         N PMN         330         284           200         N PMN         200         54           201         N PMN         200         54           202         N PMN         163                                                                              | 179            | LC SU           | 344            | 400        |                        |          |
| 182         LC SU         263         178           183         LC SU         247         142           184         LC SU         165         40           185         YP         165         50           186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         203         66           191         N PMN         145         24           192         N PMN         116         14           193         N PMN         150         24           194         N PMN         150         20           195         N PMN         172         44           196         N PMN         321         270           197         N PMN         321         284           198         N PMN         330         284           200         N PMN         200         54           201         N PMN         200         54           202         N PMN         146<                                                                              | 180            | LC SU           | 311            | 314        |                        |          |
| 183         LC SU         247         142           184         LC SU         165         40           185         YP         165         50           186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         203         66           191         N PMN         145         24           192         N PMN         116         14           193         N PMN         150         24           194         N PMN         150         20           195         N PMN         172         44           196         N PMN         321         270           197         N PMN         321         284           198         N PMN         330         284           200         N PMN         200         54           201         N PMN         200         54           202         N PMN         163         26           203         N PMN         163 </td <td>181</td> <td>LC SU</td> <td>273</td> <td>178</td> <td></td> <td></td> | 181            | LC SU           | 273            | 178        |                        |          |
| 184       LC SU       165       40         185       YP       165       50         186       SMB       190       110         187       MWF       269       184         188       WCT       241       146         189       N PMN       147       22         190       N PMN       147       22         190       N PMN       145       24         191       N PMN       145       24         192       N PMN       150       24         193       N PMN       150       24         194       N PMN       150       20         195       N PMN       172       44         196       N PMN       321       270         197       N PMN       321       284         198       N PMN       440       1048         199       N PMN       330       284         200       N PMN       200       54         201       N PMN       200       54         202       N PMN       146       20         203       N PMN       163       26                                                                                                                                                                                       | 182            | LC SU           | 263            | 178        |                        |          |
| 185         YP         165         50           186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         147         22           190         N PMN         203         66           191         N PMN         145         24           192         N PMN         116         14           192         N PMN         150         24           193         N PMN         150         20           194         N PMN         150         20           195         N PMN         172         44           196         N PMN         321         270           197         N PMN         321         284           198         N PMN         330         284           199         N PMN         330         284           200         N PMN         200         54           201         N PMN         200         54           202         N PMN         163 </td <td>183</td> <td>LC SU</td> <td>247</td> <td>142</td> <td></td> <td></td> | 183            | LC SU           | 247            | 142        |                        |          |
| 186         SMB         190         110           187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         147         22           190         N PMN         203         66           191         N PMN         145         24           192         N PMN         116         14           193         N PMN         150         24           194         N PMN         150         20           195         N PMN         172         44           196         N PMN         321         270           197         N PMN         321         284           198         N PMN         340         1048           199         N PMN         330         284           200         N PMN         200         54           201         N PMN         200         54           202         N PMN         146         20           203         N PMN         163         26           204         RB         188<                                                                              | 184            | LC SU           | 165            | 40         |                        |          |
| 187         MWF         269         184           188         WCT         241         146           189         N PMN         147         22           190         N PMN         203         66           191         N PMN         224           192         N PMN         116         14           193         N PMN         150         24           194         N PMN         150         20           195         N PMN         172         44           196         N PMN         321         270           197         N PMN         321         284           198         N PMN         440         1048           199         N PMN         330         284           200         N PMN         200         54           201         N PMN         200         54           202         N PMN         146         20           203         N PMN         163         26           204         RB         188         68           205         N PMN         175         42           206         N PMN         206         62                                                                              | 185            | YP              | 165            | 50         |                        |          |
| 188         WCT         241         146           189         N PMN         147         22           190         N PMN         203         66           191         N PMN         145         24           192         N PMN         116         14           193         N PMN         150         24           194         N PMN         150         20           195         N PMN         172         44           196         N PMN         321         270           197         N PMN         321         284           198         N PMN         440         1048           199         N PMN         330         284           200         N PMN         200         54           201         N PMN         200         54           202         N PMN         146         20           203         N PMN         163         26           204         RB         188         68           205         N PMN         175         42           206         N PMN         206         62                                                                                                                     | 186            | SMB             | 190            | 110        |                        |          |
| 188         WCT         241         146           189         N PMN         147         22           190         N PMN         203         66           191         N PMN         145         24           192         N PMN         116         14           193         N PMN         150         24           194         N PMN         150         20           195         N PMN         172         44           196         N PMN         321         270           197         N PMN         321         284           198         N PMN         440         1048           199         N PMN         330         284           200         N PMN         200         54           201         N PMN         200         54           202         N PMN         146         20           203         N PMN         163         26           204         RB         188         68           205         N PMN         175         42           206         N PMN         206         62                                                                                                                     | 187            | MWF             | 269            | 184        |                        |          |
| 190       N PMN       203       66         191       N PMN       145       24         192       N PMN       116       14         193       N PMN       150       24         194       N PMN       150       20         195       N PMN       172       44         196       N PMN       321       270         197       N PMN       321       284         198       N PMN       440       1048         199       N PMN       330       284         200       N PMN       200       54         201       N PMN       200       54         202       N PMN       146       20         203       N PMN       163       26         204       RB       188       68         205       N PMN       175       42         206       N PMN       206       62                                                                                                                                                                                                                                                                                                                                                                |                |                 |                |            |                        |          |
| 190       N PMN       203       66         191       N PMN       145       24         192       N PMN       116       14         193       N PMN       150       24         194       N PMN       150       20         195       N PMN       172       44         196       N PMN       321       270         197       N PMN       321       284         198       N PMN       440       1048         199       N PMN       330       284         200       N PMN       200       54         201       N PMN       200       54         202       N PMN       146       20         203       N PMN       163       26         204       RB       188       68         205       N PMN       175       42         206       N PMN       206       62                                                                                                                                                                                                                                                                                                                                                                |                |                 |                |            |                        |          |
| 191       N PMN       145       24         192       N PMN       116       14         193       N PMN       150       24         194       N PMN       150       20         195       N PMN       172       44         196       N PMN       321       270         197       N PMN       321       284         198       N PMN       440       1048         199       N PMN       330       284         200       N PMN       200       54         201       N PMN       200       54         202       N PMN       146       20         203       N PMN       163       26         204       RB       188       68         205       N PMN       175       42         206       N PMN       206       62                                                                                                                                                                                                                                                                                                                                                                                                           |                |                 |                |            |                        |          |
| 192       N PMN       116       14         193       N PMN       150       24         194       N PMN       150       20         195       N PMN       172       44         196       N PMN       321       270         197       N PMN       321       284         198       N PMN       440       1048         199       N PMN       330       284         200       N PMN       200       54         201       N PMN       200       54         202       N PMN       146       20         203       N PMN       163       26         204       RB       188       68         205       N PMN       175       42         206       N PMN       206       62                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                 |                |            |                        |          |
| 193     N PMN     150     24       194     N PMN     150     20       195     N PMN     172     44       196     N PMN     321     270       197     N PMN     321     284       198     N PMN     440     1048       199     N PMN     330     284       200     N PMN     200     54       201     N PMN     200     54       202     N PMN     146     20       203     N PMN     163     26       204     RB     188     68       205     N PMN     175     42       206     N PMN     206     62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                 |                |            |                        |          |
| 194       N PMN       150       20         195       N PMN       172       44         196       N PMN       321       270         197       N PMN       321       284         198       N PMN       440       1048         199       N PMN       330       284         200       N PMN       200       54         201       N PMN       200       54         202       N PMN       146       20         203       N PMN       163       26         204       RB       188       68         205       N PMN       175       42         206       N PMN       206       62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                 |                |            |                        |          |
| 195         N PMN         172         44           196         N PMN         321         270           197         N PMN         321         284           198         N PMN         440         1048           199         N PMN         330         284           200         N PMN         200         54           201         N PMN         200         54           202         N PMN         146         20           203         N PMN         163         26           204         RB         188         68           205         N PMN         175         42           206         N PMN         206         62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                 |                |            |                        |          |
| 196         N PMN         321         270           197         N PMN         321         284           198         N PMN         440         1048           199         N PMN         330         284           200         N PMN         200         54           201         N PMN         200         54           202         N PMN         146         20           203         N PMN         163         26           204         RB         188         68           205         N PMN         175         42           206         N PMN         206         62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                 |                |            |                        |          |
| 197         N PMN         321         284           198         N PMN         440         1048           199         N PMN         330         284           200         N PMN         200         54           201         N PMN         200         54           202         N PMN         146         20           203         N PMN         163         26           204         RB         188         68           205         N PMN         175         42           206         N PMN         206         62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                |            |                        |          |
| 198         N PMN         440         1048           199         N PMN         330         284           200         N PMN         200         54           201         N PMN         200         54           202         N PMN         146         20           203         N PMN         163         26           204         RB         188         68           205         N PMN         175         42           206         N PMN         206         62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                 |                |            |                        |          |
| 199     N PMN     330     284       200     N PMN     200     54       201     N PMN     200     54       202     N PMN     146     20       203     N PMN     163     26       204     RB     188     68       205     N PMN     175     42       206     N PMN     206     62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                 |                |            |                        |          |
| 200         N PMN         200         54           201         N PMN         200         54           202         N PMN         146         20           203         N PMN         163         26           204         RB         188         68           205         N PMN         175         42           206         N PMN         206         62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                 |                |            |                        |          |
| 201     N PMN     200     54       202     N PMN     146     20       203     N PMN     163     26       204     RB     188     68       205     N PMN     175     42       206     N PMN     206     62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                 |                |            |                        |          |
| 202     N PMN     146     20       203     N PMN     163     26       204     RB     188     68       205     N PMN     175     42       206     N PMN     206     62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                 |                |            |                        |          |
| 203     N PMN     163     26       204     RB     188     68       205     N PMN     175     42       206     N PMN     206     62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                 |                |            |                        |          |
| 204     RB     188     68       205     N PMN     175     42       206     N PMN     206     62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                 |                |            |                        |          |
| 205         N PMN         175         42           206         N PMN         206         62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                 |                |            |                        |          |
| 206 N PMN 206 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                 |                |            |                        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                 |                |            |                        |          |
| 207   MVVF   225   102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 207            | MWF             | 225            | 102        |                        |          |
| 208 MWF 363 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                 |                |            |                        |          |
| 209 LC SU 500 1164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                 |                |            |                        |          |
| 210 LC SU 231 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                 |                |            |                        |          |
| 211 LC SU 212 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                 |                |            |                        |          |
| 212 LC SU 273 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                 |                |            |                        |          |
| 213 LC SU 223 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                 |                |            |                        |          |

| Capture<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|-----------------|----------------|------------|------------------------|----------|
| 214            | LC SU           | 230            | 126        |                        |          |
| 215            | LC SU           | 240            | 138        |                        |          |
| 216            | MWF             | 202            | 70         |                        |          |
| 217            | N PMN           | 270            | 160        |                        |          |
| 218            | LC SU           | 183            | 56         |                        |          |
| 219            | LC SU           | 136            | 22         |                        |          |
| 220            | LC SU           | 140            | 22         |                        |          |
| 221            | YP              | 171            | 60         |                        |          |
| 222            | LC SU           | 516            | 1352       |                        |          |
| 223            | MWF             | 417            | 358        |                        |          |
| 224            | MWF             | 382            | 398        |                        |          |
| 225            | MWF             | 413            | 696        |                        |          |
| 226            | MWF             | 353            | 336        |                        |          |
| 227            | MWF             | 352            | 352        |                        |          |
| 228            | MWF             | 205            | 74         |                        |          |
| 229            | N PMN           | 331            | 308        |                        |          |
| 230            | MWF             | 277            | 176        |                        |          |
| 231            | MWF             | 131            | 20         |                        |          |
| 232            | LC SU           | 371            | 540        |                        |          |
| 233            | LC SU           | 541            | 1678       |                        |          |
| 234            | LC SU           | 458            | 1078       |                        |          |
| 235            | LC SU           | 466            | 1026       |                        |          |
| 236            | LC SU           | 457            | 996        |                        |          |
| 237            | RB              | 225            | 122        |                        |          |
| 238            | LC SU           | 286            | 252        |                        |          |
| 239            | LC SU           | 462            | 1042       |                        |          |
| 240            | LC SU           | 300            | 314        |                        |          |
| 241            | MWF             | 145            | 32         |                        |          |
| 242            | MWF             | 128            | 32         |                        |          |
| 243            | MWF             | 105            | 2          |                        |          |
| 244            | N PMN           | 351            | 368        |                        |          |
| 245            | N PMN           | 328            | 270        |                        |          |
| 246            | LC SU           | 442            | 990        |                        |          |
| 247            | LC SU           | 495            | 1238       |                        |          |
| 248            | LC SU           | 383            | 630        |                        |          |
| 249            | LC SU           | 524            | 1186       |                        |          |
| 250            | LC SU           | 456            | 1022       |                        |          |
| 251            | LC SU           | 432            | 884        |                        |          |
| 252            | LC SU           | 472            | 1132       |                        |          |
| 253            | MWF             | 305            | 266        |                        |          |
| 254            | MWF             | 282            | 190        |                        |          |
| 255            | MWF             | 200            | 82         |                        |          |
| 256            | MWF             | 372            | 452        |                        |          |
| 257            | MWF             | 366            | 386        |                        |          |

| Capture<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|-----------------|----------------|------------|------------------------|----------|
| 258            | MWF             | 415            | 464        |                        |          |
| 259            | MWF             | 196            | 88         |                        |          |
| 260            | MWF             | 276            | 202        |                        |          |
| 261            | RB              | 182            | 82         |                        |          |
| 262            | LC SU           | 215            | 126        |                        |          |
| 263            | LC SU           | 223            | 124        |                        |          |
| 264            | N PMN           | 382            | 538        |                        |          |
| 265            | N PMN           | 355            | 410        |                        |          |
| 266            | MWF             | 262            | 142        |                        |          |
| 267            | MWF             | 241            | 118        |                        |          |
| 268            | MWF             | 277            | 168        |                        |          |
| 269            | MWF             | 280            | 192        |                        |          |
| 270            | MWF             | 356            | 392        |                        |          |
| 271            | MWF             | 350            | 310        |                        |          |
| 272            | MWF             | 121            | 18         |                        |          |
| 273            | MWF             | 201            | 70         |                        |          |
| 274            | MWF             | 97             | 10         |                        |          |
| 275            | LC SU           | 468            | 1082       |                        |          |
| 276            | LC SU           | 452            | 864        |                        |          |
| 277            | LC SU           | 487            | 1162       |                        |          |
| 278            | LC SU           | 540            | 1678       |                        |          |
| 279            | LC SU           | 381            | 560        |                        |          |
| 280            | LC SU           | 466            | 1020       |                        |          |
| 281            | LC SU           | 553            | 1530       |                        |          |
| 282            | LC SU           | 577            | 1396       |                        |          |
| 283            | LC SU           | 352            | 448        |                        |          |
| 284            | LC SU           | 481            | 1150       |                        |          |
| 285            | LC SU           | 160            | 36         |                        |          |
| 286            | N PMN           | 316            | 310        |                        |          |
| 287            | N PMN           | 500            | 1268       |                        |          |
| 288            | N PMN           | 453            | 810        |                        |          |
| 289            | N PMN           | 371            | 464        |                        |          |
| 290            | N PMN           | 167            | 14         |                        |          |
| 291            | N PMN           | 170            | 38         |                        |          |
| 292            | MWF             | 130            | 16         |                        |          |
| 293            | MWF             | 123            | 18         |                        |          |
| 294            | MWF             | 112            | 14         |                        |          |
| 295            | N PMN           | 413            | 358        |                        |          |
| 296            | LC SU           | 450            | 1106       |                        |          |
| 297            | WCT             | 390            | 612        |                        |          |
| 298            | MWF             | 371            | 410        |                        |          |
| 299            | MWF             | 222            | 80         |                        |          |
| 300            | N PMN           | 312            | 270        |                        |          |
| 301            | N PMN           | 320            | 324        |                        |          |

| Capture<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|-----------------|----------------|------------|------------------------|----------|
| 302            | N PMN           | 243            | 126        |                        |          |
| 303            | N PMN           | 390            | 540        |                        |          |
| 304            | N PMN           | 325            | 296        |                        |          |
| 305            | LC SU           | 425            | 792        |                        |          |
| 306            | LC SU           | 515            | 1574       |                        |          |
| 307            | LC SU           | 470            | 1114       |                        |          |
| 308            | LC SU           | 470            | 1170       |                        |          |
| 309            | LC SU           | 450            | 1118       |                        |          |
| 310            | LC SU           | 465            | 1130       |                        |          |
| 311            | LC SU           | 272            | 198        |                        |          |
| 312            | LC SU           | 235            | 138        |                        |          |
| 313            | LC SU           | 208            | 116        |                        |          |
| 314            | N PMN           | 207            | 84         |                        |          |
| 315            | MWF             | 115            | 10         |                        |          |
| 316            | MWF             | 285            | 196        |                        |          |
| 317            | MWF             | 276            | 176        |                        |          |
| 318            | RB              | 402            | 548        |                        |          |
| 319            | N PMN           | 210            | 72         |                        |          |
| 320            | N PMN           | 170            | 42         |                        |          |
| 321            | N PMN           | 432            | 754        |                        |          |
| 322            | N PMN           | 390            | 516        |                        |          |
| 323            | N PMN           | 370            | 476        |                        |          |
| 324            | LC SU           | 436            | 806        |                        |          |
| 325            | LC SU           | 441            | 890        |                        |          |
| 326            | LC SU           | 483            | 1146       |                        |          |
| 327            | LC SU           | 457            | 808        |                        |          |
| 328            | LC SU           | 442            | 946        |                        |          |
| 329            | LC SU           | 550            | 1800       |                        |          |
| 330            | LC SU           | 477            | 994        |                        |          |
| 331            | LC SU           | 471            | 1004       |                        |          |
| 332            | LC SU           | 537            | 1412       |                        |          |
| 333            | LC SU           | 412            | 784        |                        |          |
| 334            | LC SU           | 196            | 84         |                        |          |
| 335            | LC SU           | 147            | 42         |                        |          |
| 336            | N PMN           | 303            | 236        |                        |          |
| 337            | MWF             | 325            | 292        |                        |          |
| 338            | MWF             | 215            | 92         |                        |          |
| 339            | MWF             | 98             | 6          |                        |          |
| 340            | MWF             | 252            | 144        |                        |          |
| 341            | MWF             | 312            | 290        |                        |          |
| 342            | RB              | 227            | 104        |                        |          |
| 343            | MWF             | 268            | 156        |                        |          |
| 344            | MWF             | 225            | 82         |                        |          |
| 345            | MWF             | 138            | 18         |                        |          |

| Capture<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|-----------------|----------------|------------|------------------------|----------|
| 346            | LC SU           | 480            | 1146       |                        |          |
| 347            | LC SU           | 431            | 766        |                        |          |
| 348            | LC SU           | 458            | 1002       |                        |          |
| 349            | LC SU           | 522            | 1440       |                        |          |
| 350            | LC SU           | 435            | 786        |                        |          |
| 351            | LC SU           | 389            | 588        |                        |          |
| 352            | LC SU           | 376            | 548        |                        |          |
| 353            | LC SU           | 397            | 638        |                        |          |
| 354            | LC SU           | 460            | 954        |                        |          |
| 355            | LC SU           | 360            | 448        |                        |          |
| 356            | LC SU           | 476            | 1104       |                        |          |
| 357            | LC SU           | 447            | 984        |                        |          |
| 358            | LC SU           | 351            | 444        |                        |          |
| 359            | LC SU           | 367            | 508        |                        |          |
| 360            | LC SU           | 401            | 674        |                        |          |
| 361            | LC SU           | 290            | 270        |                        |          |
| 362            | LC SU           | 304            | 276        |                        |          |
| 363            | LC SU           | 306            | 336        |                        |          |
| 364            | LC SU           | 365            | 488        |                        |          |
| 365            | LC SU           | 362            | 470        |                        |          |
| 366            | LC SU           | 362            | 216        |                        |          |
| 367            | LC SU           | 194            | 100        |                        |          |
| 368            | LC SU           | 196            | 142        |                        |          |
| 369            | LC SU           | 175            | 80         |                        |          |
| 370            | LC SU           | 192            | 96         |                        |          |
| 371            | N PMN           | 181            | 64         |                        |          |
| 372            | N PMN           | 196            | 82         |                        |          |
| 373            | N PMN           | 390            | 560        |                        |          |
| 374            | N PMN           | 287            | 210        |                        |          |
| 375            | N PMN           | 351            | 422        |                        |          |
| 376            | LC SU           | 422            | 774        |                        |          |
| 377            | MWF             | 118            | 12         |                        |          |
| 378            | MWF             | 282            | 176        |                        |          |
| 379            | MWF             | 204            | 68         |                        |          |
| 380            | MWF             | 322            | 276        |                        |          |
| 381            | RB              | 250            | 162        |                        |          |
| 382            | RB              | 201            | 74         |                        |          |
| 383            | LC SU           | 533            | 1360       |                        |          |
| 384            | LC SU           | 455            | 920        |                        |          |
| 385            | LC SU           | 490            | 1158       |                        |          |
| 386            | LC SU           | 445            | 996        |                        |          |
| 387            | LC SU           | 492            | 1212       |                        |          |
| 388            | LC SU           | 468            | 1184       |                        |          |
| 389            | LC SU           | 480            | 1186       |                        |          |

| Capture<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|-----------------|----------------|------------|------------------------|----------|
| 390            | LC SU           | 395            | 576        |                        |          |
| 391            | LC SU           | 555            | 1684       |                        |          |
| 392            | LC SU           | 483            | 1202       |                        |          |
| 393            | LC SU           | 351            | 486        |                        |          |
| 394            | LC SU           | 460            | 970        |                        |          |
| 395            | LC SU           | 212            | 116        |                        |          |
| 396            | LC SU           | 181            | 64         |                        |          |
| 397            | LC SU           | 476            | 1128       |                        |          |
| 398            | N PMN           | 350            | 342        |                        |          |
| 399            | N PMN           | 312            | 254        |                        |          |
| 400            | N PMN           | 342            | 362        |                        |          |
| 401            | N PMN           | 340            | 366        |                        |          |
| 402            | N PMN           | 172            | 56         |                        |          |
| 403            | N PMN           | 360            | 436        |                        |          |
| 404            | N PMN           | 285            | 230        |                        |          |
| 405            | MWF             | 135            | 14         |                        |          |
| 406            | MWF             | 141            | 20         |                        |          |
| 407            | LC SU           | 272            | 216        |                        |          |
| 408            | LC SU           | 216            | 106        |                        |          |
| 409            | LC SU           | 202            | 78         |                        |          |
| 410            | LC SU           | 362            | 502        |                        |          |
| 411            | LC SU           | 227            | 156        |                        |          |
| 412            | RB              | 231            | 112        |                        |          |
| 413            | N PMN           | 212            | 66         |                        |          |
| 414            | N PMN           | 171            | 34         |                        |          |
| 415            | N PMN           | 173            | 32         |                        |          |
| 416            | N PMN           | 218            | 68         |                        |          |
| 417            | MWF             | 355            | 432        |                        |          |
| 418            | MWF             | 255            | 156        |                        |          |
| 419            | RB              | 227            | 138        |                        |          |
| 420            | MWF             | 206            | 82         |                        |          |
| 421            | MWF             | 192            | 66         |                        |          |
| 422            | MWF             | 220            | 100        |                        |          |
| 423            | MWF             | 212            | 94         |                        |          |
| 424            | MWF             | 310            | 284        |                        |          |
| 425            | RB              | 262            | 242        |                        |          |
| 426            | N PMN           | 170            | 64         |                        |          |
| 427            | LC SU           | 408            | 696        |                        |          |
| 428            | LC SU           | 560            | 1820       |                        |          |
| 429            | LC SU           | 502            | 1178       |                        |          |
| 430            | LC SU           | 462            | 1072       |                        |          |
| 431            | LC SU           | 511            | 1488       |                        |          |
| 432            | LC SU           | 451            | 980        |                        |          |
| 433            | LC SU           | 460            | 1082       |                        |          |

| Capture<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No./Floy<br>ID | Comments |
|----------------|-----------------|----------------|------------|------------------------|----------|
| 434            | N PMN           | 352            | 420        |                        |          |
| 435            | RB              | 178            | 60         |                        |          |
| 436            | N PMN           | 180            | 46         |                        |          |
| 437            | MWF             | 375            | 434        |                        |          |
| 438            | MWF             | 180            | 48         |                        |          |
| 439            | RB              | 231            | 152        |                        |          |
| 440            | RB              | 215            | 98         |                        |          |
| 441            | RB              | 493            | 1164       |                        |          |
| 442            | N PMN           | 393            | 526        |                        |          |
| 443            | N PMN           | 375            | 488        |                        |          |
| 444            | N PMN           | 522            | 1448       |                        |          |
| 445            | N PMN           | 460            | 958        |                        |          |
| 446            | MWF             | 341            | 356        |                        |          |
| 447            | MWF             | 277            | 212        |                        |          |
| 448            | MWF             | 281            | 228        |                        |          |
| 449            | MWF             | 123            | 14         |                        |          |
| 450            | LC SU           | 502            | 1142       |                        |          |
| 451            | LC SU           | 455            | 990        |                        |          |
| 452            | LC SU           | 392            | 638        |                        |          |
| 453            | LC SU           | 300            | 256        |                        |          |
| 454            | LC SU           | 461            | 1040       |                        |          |
| 455            | MWF             | 230            | 114        |                        |          |
| 456            | N PMN           | 330            | 316        |                        |          |
| 457            | LC SU           | 175            | 58         |                        |          |
| 458            | LC SU           | 153            | 34         |                        |          |
| 459            | LC SU           | 157            | 30         |                        |          |

## **Quinn's Section – Clark Fork River**

Table B-8. Electrofishing data collected in the Fall 2011 from the St. Regis Section of the Clark Fork River. (Source: FWP 2011).

|           |           | ource: FWF | ,        |          |        |        |          |           |
|-----------|-----------|------------|----------|----------|--------|--------|----------|-----------|
| Date      | RunNumber | TripType   | MarkCode | Spec_Num | Length | Weight | SpecAbbr | Hook Scar |
| 10/6/2010 | 1         | 1          | 0        | 1        | 269    | 180    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 377    | 505    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 281    | 200    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 468    | 1080   | RB       | HS        |
| 10/6/2010 | 1         | 1          | 0        | 1        | 285    | 230    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 440    | 810    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 428    | 795    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 355    | 460    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 375    | 565    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 317    | 305    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 346    | 370    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 435    | 755    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 391    | 585    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 350    | 470    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 394    | 585    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 332    | 370    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 430    | 815    | RB       | HS        |
| 10/6/2010 | 1         | 1          | 0        | 1        | 461    | 990    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 420    | 785    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 415    | 705    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 340    | 345    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 192    | 70     | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 345    | 380    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 336    | 355    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 404    | 660    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 380    | 525    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 366    | 485    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 315    | 300    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 252    | 150    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 368    | 430    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 325    | 285    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 472    | 970    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 430    | 735    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 428    | 605    | RB       | HS        |
| 10/6/2010 | 1         | 1          | 0        | 1        | 451    | 830    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 455    | 765    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 387    | 500    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 412    | 590    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 490    | 1140   | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 470    | 965    | RB       |           |
| 10/6/2010 | 1         | 1          | 0        | 1        | 396    | 550    | RB       |           |

| Date      | RunNumber | TripType | MarkCode | Spec_Num | Length | Weight | SpecAbbr | Hook Scar |
|-----------|-----------|----------|----------|----------|--------|--------|----------|-----------|
| 10/6/2010 | 1         | 1        | 0        | 1        | 430    | 715    | RB       | HS        |
| 10/6/2010 | 1         | 1        | 0        | 1        | 285    | 190    | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 1        | 425    | 680    | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 1        | 343    | 335    | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 1        | 403    | 605    | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 1        | 475    | 1030   | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 1        | 420    | 695    | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 1        | 400    | 530    | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 1        | 345    | 370    | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 1        | 483    | 1065   | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 1        | 441    | 780    | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 1        | 423    | 715    | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 1        | 270    | 200    | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 1        | 325    | 370    | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 1        | 228    | 140    | RB       |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 355    | 460    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 360    | 455    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 365    | 485    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 326    | 345    | WCT      | HS        |
| 10/6/2010 | 1         | 1        | 0        | 12       | 232    | 110    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 393    | 605    | WCT      | HS        |
| 10/6/2010 | 1         | 1        | 0        | 12       | 415    | 720    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 353    | 475    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 485    | 1110   | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 375    | 530    | WCT      | HS        |
| 10/6/2010 | 1         | 1        | 0        | 12       | 321    | 320    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 382    | 550    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 366    | 510    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 380    | 625    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 379    | 515    | WCT      | HS        |
| 10/6/2010 | 1         | 1        | 0        | 12       | 403    | 630    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 397    | 575    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 365    | 475    | WCT      | HS        |
| 10/6/2010 | 1         | 1        | 0        | 12       | 355    | 480    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 336    | 380    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 342    | 380    | WCT      | HS        |
| 10/6/2010 | 1         | 1        | 0        | 12       | 222    | 95     | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 420    | 690    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 365    | 485    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 377    | 460    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 460    | 970    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 380    | 535    | WCT      | HS        |
| 10/6/2010 | 1         | 1        | 0        | 12       | 400    | 610    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 285    | 230    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 374    | 485    | WCT      |           |

| Date      | RunNumber | TripType | MarkCode | Spec_Num | Length | Weight | SpecAbbr | Hook Scar |
|-----------|-----------|----------|----------|----------|--------|--------|----------|-----------|
| 10/6/2010 | 1         | 1        | 0        | 12       | 387    | 535    | WCT      | HS        |
| 10/6/2010 | 1         | 1        | 0        | 12       | 360    | 460    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 336    | 330    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 232    | 95     | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 341    | 400    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 249    | 150    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 12       | 352    | 455    | WCT      | HS        |
| 10/6/2010 | 1         | 1        | 0        | 12       | 340    | 420    | WCT      |           |
| 10/6/2010 | 1         | 1        | 0        | 4        | 358    | 420    | LL       |           |
| 10/6/2010 | 1         | 1        | 0        | 4        | 511    | 1235   | LL       |           |
| 10/6/2010 | 1         | 1        | 0        | 23       | 570    | 1250   | NP       |           |
| 10/6/2010 | 1         | 1        | 0        | 17       | 306    | 460    | SMB      |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 405    | 640    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 452    | 373    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 373    | 460    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 369    | 430    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 387    | 540    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 390    | 575    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 352    | 395    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 445    | 655    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 430    | 740    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 440    | 795    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 428    | 705    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 213    | 80     | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 438    | 820    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 355    | 400    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 370    | 480    | RB       | HS        |
| 10/7/2010 | 2         | 1        | 0        | 1        | 181    | 55     | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 377    | 470    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 314    | 255    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 430    | 745    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 440    | 835    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 390    | 505    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 437    | 905    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 411    | 605    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 270    | 175    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 250    | 140    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 344    | 370    | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 220    | 90     | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 1        | 212    | 90     | RB       |           |
| 10/7/2010 | 2         | 1        | 0        | 12       | 324    | 310    | WCT      |           |
| 10/7/2010 | 2         | 1        | 0        | 12       | 379    | 570    | WCT      |           |
| 10/7/2010 | 2         | 1        | 0        | 12       | 409    | 610    | WCT      |           |
| 10/7/2010 | 2         | 1        | 0        | 12       | 342    | 430    | WCT      |           |
| 10/7/2010 | 2         | 1        | 0        | 12       | 410    | 750    | WCT      |           |

| Date       | RunNumber | TripType | MarkCode | Spec_Num | Length | Weight | SpecAbbr | Hook Scar |
|------------|-----------|----------|----------|----------|--------|--------|----------|-----------|
| 10/7/2010  | 2         | 1        | 0        | 12       | 372    | 535    | WCT      | HS        |
| 10/7/2010  | 2         | 1        | 0        | 12       | 375    | 550    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 386    | 595    | WCT      | HS        |
| 10/7/2010  | 2         | 1        | 0        | 12       | 340    | 380    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 362    | 430    | WCT      | HS        |
| 10/7/2010  | 2         | 1        | 0        | 12       | 353    | 440    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 342    | 365    | WCT      | HS        |
| 10/7/2010  | 2         | 1        | 0        | 12       | 376    | 515    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 352    | 450    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 373    | 480    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 368    | 445    | WCT      | HS        |
| 10/7/2010  | 2         | 1        | 0        | 12       | 395    | 550    | WCT      | HS        |
| 10/7/2010  | 2         | 1        | 0        | 12       | 321    | 320    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 377    | 480    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 366    | 450    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 357    | 450    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 286    | 235    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 366    | 490    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 410    | 645    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 380    | 490    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 240    | 120    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 338    | 365    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 12       | 345    | 360    | WCT      |           |
| 10/7/2010  | 2         | 1        | 0        | 4        | 434    | 950    | LL       |           |
| 10/7/2010  | 2         | 1        | 0        | 4        | 200    | 70     | LL       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 432    | 755    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 248    | 140    | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 413    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 417    | 690    | RB       | HS        |
| 10/13/2010 | 3         | 2        | 0        | 1        | 435    | 745    | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 420    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 400    | 615    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 416    | 630    | RB       | HS        |
| 10/13/2010 | 3         | 2        | 0        | 1        | 430    | 790    | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 435    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 425    | 735    | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 436    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 365    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 370    | 535    | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 212    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 235    | 110    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 402    | 655    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 390    | 535    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 253    | 155    | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 335    |        | RB       |           |

| Date       | RunNumber | TripType | MarkCode | Spec_Num | Length | Weight | SpecAbbr | Hook Scar |
|------------|-----------|----------|----------|----------|--------|--------|----------|-----------|
| 10/13/2010 | 3         | 2        | 1        | 1        | 385    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 370    | 425    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 236    | 125    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 230    | 115    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 450    | 860    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 418    | 640    | RB       | HS        |
| 10/13/2010 | 3         | 2        | 0        | 1        | 401    | 470    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 395    | 575    | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 364    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 352    | 380    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 405    | 675    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 440    | 750    | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 469    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 460    | 965    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 395    | 630    | RB       | HS        |
| 10/13/2010 | 3         | 2        | 0        | 1        | 505    | 1135   | RB       | HS        |
| 10/13/2010 | 3         | 2        | 0        | 1        | 449    | 870    | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 438    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 405    | 590    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 498    | 1160   | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 447    | 870    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 395    | 580    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 331    | 370    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 280    | 200    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 264    | 160    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 365    | 415    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 276    | 180    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 342    | 380    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 288    | 210    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 402    | 605    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 470    | 860    | RB       | HS        |
| 10/13/2010 | 3         | 2        | 0        | 1        | 365    | 430    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 406    | 705    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 370    | 540    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 204    | 85     | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 376    | 515    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 435    | 785    | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 411    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 280    | 220    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 244    | 244    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 438    | 925    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 255    | 170    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 438    | 910    | RB       | HS        |
| 10/13/2010 | 3         | 2        | 0        | 1        | 420    | 710    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 490    | 1135   | RB       |           |

| Date       | RunNumber | TripType | MarkCode | Spec_Num | Length | Weight | SpecAbbr | Hook Scar |
|------------|-----------|----------|----------|----------|--------|--------|----------|-----------|
| 10/13/2010 | 3         | 2        | 1        | 1        | 480    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 210    | 105    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 390    | 550    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 490    | 1150   | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 410    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 279    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 305    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 195    | 65     | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 382    | 510    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 415    | 635    | RB       |           |
| 10/13/2010 | 3         | 2        | 0        | 1        | 405    | 580    | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 1        | 210    |        | RB       |           |
| 10/13/2010 | 3         | 2        | 1        | 12       | 356    |        | WCT      |           |
| 10/13/2010 | 3         | 2        | 1        | 12       | 485    |        | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 390    | 585    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 423    | 805    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 385    | 650    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 397    | 640    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 317    | 290    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 263    | 170    | WCT      |           |
| 10/13/2010 | 3         | 2        | 1        | 12       | 355    |        | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 356    | 405    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 368    | 485    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 405    | 610    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 368    | 530    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 380    | 515    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 382    | 535    | WCT      | HS        |
| 10/13/2010 | 3         | 2        | 1        | 12       | 364    |        | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 208    | 85     | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 286    | 210    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 372    | 470    | WCT      |           |
| 10/13/2010 | 3         | 2        | 1        | 12       | 395    |        | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 394    | 545    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 353    | 440    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 427    | 720    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 340    | 350    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 356    | 450    | WCT      | HS        |
| 10/13/2010 | 3         | 2        | 0        | 12       | 355    | 420    | WCT      |           |
| 10/13/2010 | 3         | 2        | 1        | 12       | 356    |        | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 345    | 430    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 398    | 660    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 285    | 245    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 368    | 460    | WCT      |           |
| 10/13/2010 | 3         | 2        | 1        | 12       | 384    |        | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 381    | 535    | WCT      |           |

| Date       | RunNumber | TripType | MarkCode | Spec_Num | Length | Weight | SpecAbbr | Hook Scar |
|------------|-----------|----------|----------|----------|--------|--------|----------|-----------|
| 10/13/2010 | 3         | 2        | 0        | 12       | 344    | 415    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 361    | 470    | WCT      |           |
| 10/13/2010 | 3         | 2        | 1        | 12       | 245    |        | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 440    | 910    | WCT      |           |
| 10/13/2010 | 3         | 2        | 1        | 12       | 460    |        | WCT      |           |
| 10/13/2010 | 3         | 2        | 1        | 12       | 367    |        | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 312    | 295    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 392    | 530    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 366    | 450    | WCT      |           |
| 10/13/2010 | 3         | 2        | 1        | 12       | 415    |        | WCT      |           |
| 10/13/2010 | 3         | 2        | 1        | 12       | 380    |        | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 262    | 170    | WCT      |           |
| 10/13/2010 | 3         | 2        | 1        | 12       | 358    |        | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 12       | 235    | 105    | WCT      |           |
| 10/13/2010 | 3         | 2        | 0        | 4        | 349    | 355    | LL       |           |
| 10/13/2010 | 3         | 2        | 0        | 5        | 270    | 165    | BULL     |           |

## Electrofishing St. Regis Section – Clark Fork River Table B-9. Electrofishing data collected in the Fall 2011 from the St. Regis Section of the Clark Fork River. (Source: FWP 2011).

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | BULL    | 481    | 870    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 175    | 55     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 193    | 65     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 220    | 100    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 227    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 243    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 251    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 255    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 265    | 185    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 268    | 210    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 274    | 195    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 314    | 330    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 318    | 295    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 340    | 340    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 353    | 380    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 356    | 400    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 360    | 470    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 361    | 415    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 363    | 505    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 381    | 525    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 388    | 625    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 390    | 485    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 395    | 580    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 396    | 525    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 403    | 610    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | LL      | 410    | 650    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 411    | 680    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 412    | 675    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 416    | 705    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 423    | 785    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 423    | 910    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 430    | 790    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 436    | 860    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 445    | 1075   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 445    | 830    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 445    | 985    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 450    | 855    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 473    | 1075   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 475    | 1080   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 480    | 1135   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 485    | 1125   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 489    | 1230   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 492    | 1070   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 493    | 1305   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 496    | 1345   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 501    | 1310   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 502    | 1390   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 506    | 1350   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 514    | 1515   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 520    | 1475   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 521    | 1485   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 533    | 1545   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 533    | 1545   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | LL      | 534    | 1365   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 535    | 1820   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 535    | 1735   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 545    | 1160   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 563    | 1980   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 582    | 1875   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LL      | 605    | 1955   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | LT      | 452    | 540    | 0   | 1    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 188    | 65     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 190    | 60     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 192    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 192    | 70     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 195    | 80     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 200    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 202    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 206    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 206    | 95     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 207    | 95     | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 207    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 208    | 90     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 208    | 90     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 210    | 105    | 0   | 0    |              | MC      |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 210    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 210    | 95     | 0   | 0    |              | MC      |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 212    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 214    | 120    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 215    | 95     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 216    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 218    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 220    | 120    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 220    | 115    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 220    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 220    | 115    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 221    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 224    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 225    | 115    | 0   | 0    |              | MC      |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 225    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 227    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 228    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 228    | 135    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 228    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 230    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 230    | 120    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 230    | 120    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 230    | 110    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 231    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 231    | 115    | 0   | 0    |              | MC      |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 231    | 120    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 234    | 135    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 234    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 236    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 236    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 237    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 238    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 238    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 238    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 238    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 238    | 135    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 239    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 239    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 239    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 240    | 155    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 240    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 241    | 145    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 243    | 145    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 244    | 135    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 245    | 135    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 245    | 150    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 245    | 155    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 245    | 135    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 246    | 165    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 248    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 249    | 150    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 252    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 252    | 150    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 254    | 165    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 255    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 256    | 150    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 258    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 259    | 175    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 260    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 260    | 180    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 261    | 180    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 262    | 175    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 265    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 265    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 265    | 180    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 266    | 185    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 266    | 200    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 267    | 195    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 267    | 185    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 267    | 205    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 268    | 185    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 270    | 180    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 270    | 215    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 270    | 185    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 271    | 200    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 271    | 245    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 274    | 195    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 275    | 215    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 280    | 245    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 281    | 230    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 285    | 225    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 285    | 220    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 286    | 210    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 287    | 240    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 288    | 235    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 290    | 205    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 292    | 215    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 295    | 245    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 297    | 240    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 297    | 235    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 297    | 235    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 300    | 265    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 300    | 250    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 300    | 300    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 300    | 260    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 301    | 265    | 0   | 0    |              | MC      |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 302    | 220    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 303    | 270    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 304    | 270    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 308    | 280    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 310    | 290    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 312    | 305    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 313    | 330    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 315    | 310    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 315    | 285    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 320    | 315    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 320    | 310    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 320    | 310    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 323    | 315    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 324    | 330    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 325    | 350    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 325    | 345    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 325    | 320    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 325    | 315    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 327    | 325    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 327    | 310    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 327    | 325    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 329    | 345    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 330    | 325    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 330    | 360    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 330    | 320    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 330    | 360    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 333    | 290    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 335    | 350    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 339    | 375    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 340    | 355    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 340    | 385    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 340    | 355    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 340    | 365    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 341    | 380    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 341    | 375    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 342    | 390    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 342    | 325    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 344    | 415    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 345    | 425    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 346    | 370    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 347    | 395    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 348    | 395    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 349    | 440    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 350    | 415    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 350    | 405    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 352    | 405    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 352    | 435    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 360    | 420    | 0   | 0    |              | MC      |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 362    | 525    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 363    | 420    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 365    | 405    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 367    | 520    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 373    | 510    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 374    | 520    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 381    | 520    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 389    | 540    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 402    | 570    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 404    | 650    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 405    | 580    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 406    | 680    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 406    | 645    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 406    | 575    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 409    | 590    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 411    | 695    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 411    | 680    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 414    | 610    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 417    | 660    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 420    | 555    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 420    | 660    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 420    | 750    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 422    | 715    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 426    | 775    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 426    | 735    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 430    | 585    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 430    | 660    | 0   | 0    |              | MC      |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 430    | 690    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 432    | 740    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 432    | 785    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 434    | 740    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 435    | 770    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 435    | 765    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 436    | 805    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 437    | 770    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 438    | 890    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 439    | 780    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 440    | 855    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 442    | 785    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 443    | 710    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 444    | 840    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 445    | 895    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 446    | 870    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 447    | 900    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 447    | 975    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 450    | 840    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 452    | 830    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 460    | 895    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 460    | 955    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 461    | 1035   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 463    | 860    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 464    | 955    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 466    | 840    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 468    | 1075   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 468    | 950    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 471    | 955    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 472    | 1045   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 486    | 1155   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 497    | 1035   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 498    | 1140   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 512    | 1375   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | RB      | 525    | 1535   | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 193    | 70     | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 213    | 100    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 224    | 115    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 226    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 231    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 233    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 235    | 115    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 238    | 150    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 240    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 240    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 242    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 249    | 155    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 250    | 150    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 251    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 252    | 175    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 256    | 185    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 257    | 185    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 259    | 165    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 259    | 175    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 261    | 180    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 264    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 266    | 195    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 266    | 205    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 266    | 175    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | WCT     | 267    | 200    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 270    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 270    | 185    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 272    | 210    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 272    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 274    | 210    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 274    | 200    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 275    | 210    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 276    | 195    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 278    | 225    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 278    | 225    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 279    | 205    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 280    | 210    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 280    | 205    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 280    | 215    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 280    | 220    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 280    | 215    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 282    | 215    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 285    | 205    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 287    | 215    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 288    | 235    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 290    | 240    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 291    | 220    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 293    | 250    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 293    | 245    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 293    | 240    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 295    | 270    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 295    | 240    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | WCT     | 296    | 255    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 300    | 255    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 303    | 235    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 306    | 275    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 306    | 290    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 307    | 270    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 310    | 260    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 325    | 350    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 327    | 355    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 330    | 330    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 333    | 320    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 335    | 340    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 346    | 410    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 353    | 455    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 354    | 420    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 354    | 390    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 357    | 485    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 357    | 480    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 360    | 410    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 374    | 545    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 375    | 515    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 378    | 455    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 378    | 490    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 379    | 440    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 379    | 495    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 382    | 465    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 384    | 405    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 385    | 625    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | WCT     | 385    | 510    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 387    | 575    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 387    | 490    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 388    | 625    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 390    | 535    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 391    | 550    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 392    | 525    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 400    | 635    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 404    | 625    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 421    | 675    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 422    | 705    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 423    | 745    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 435    | 805    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 437    | 775    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | М            |
| 2011 | WCT     | 439    | 810    | 0   | 0    |              |         |     |          | Jet Boat Boom | М            |
| 2011 | BULL    | 200    | 60     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 192    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 207    | 90     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 210    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 211    | 95     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 215    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 215    | 95     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 221    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 226    | 115    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 227    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 227    | 120    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 229    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 243    | 135    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | LL      | 243    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 245    | 325    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 246    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 250    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 250    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 256    | 165    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 268    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 269    | 195    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 270    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 277    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 286    | 195    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 288    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 294    | 235    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 298    | 245    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 306    | 290    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 306    | 285    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 309    | 265    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 319    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 320    | 305    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 320    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 330    | 340    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 330    | 355    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 340    | 380    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 340    | 365    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 355    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 360    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 379    | 485    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 390    | 590    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | LL      | 393    | 595    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 406    | 650    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 406    | 690    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 410    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 412    | 675    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 423    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 425    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 433    | 785    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 438    | 865    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 438    | 820    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 445    | 705    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 462    | 870    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 474    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 477    | 1250   | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 477    | 940    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 488    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 497    | 1310   | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 509    | 1360   | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 566    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | LL      | 575    | 2420   | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 178    | 50     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 180    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 180    | 50     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 182    | 65     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 183    | 55     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 185    | 60     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 188    | 60     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 188    | 55     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 190    | 60     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 190    | 60     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 191    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 191    | 70     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 193    | 70     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 196    | 70     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 196    | 70     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 196    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 197    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 197    | 65     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 197    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 198    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 198    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 199    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 200    | 70     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 200    | 80     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 201    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 201    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 201    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 204    | 95     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 204    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 205    | 80     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 205    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 205    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 205    | 90     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 205    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 205    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 205    | 90     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 206    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 206    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 206    | 80     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 206    | 80     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 207    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 207    | 100    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 207    | 80     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 209    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 209    | 90     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 209    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 211    | 100    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 211    | 90     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 211    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 212    | 90     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 212    | 100    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 212    | 90     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 213    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 213    | 95     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 213    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 214    | 90     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 215    | 100    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 215    | 100    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 215    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 215    | 95     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 216    | 100    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 216    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 217    | 85     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 217    | 100    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 217    | 85     | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 218    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 218    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 218    | 115    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 219    | 100    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 219    | 115    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 220    | 100    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 220    | 100    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 220    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 220    | 90     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 220    | 115    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 221    | 95     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 222    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 223    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 223    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 223    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 225    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 225    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 225    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 226    | 115    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 226    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 226    | 120    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 226    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 227    | 115    | 0   | 0    |              | МС      |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 227    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 228    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 229    | 135    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 229    | 115    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 230    | 115    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 230    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 230    | 115    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 231    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 231    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 232    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 232    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 232    | 110    | 0   | 0    |              | MC      |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 233    | 120    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 233    | 120    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 233    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 233    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 234    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 234    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 235    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 235    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 235    | 135    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 235    | 135    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 236    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 236    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 236    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 237    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 237    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 237    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 237    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 238    | 150    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 238    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 238    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 238    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 239    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 240    | 120    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 242    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 242    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 242    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 243    | 135    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 243    | 145    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 244    | 145    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 245    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 245    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 245    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 247    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 247    | 157    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 247    | 150    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 249    | 195    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 250    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 250    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 250    | 165    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 250    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 251    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 253    | 145    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 253    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 253    | 135    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 254    | 155    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 255    | 145    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 255    | 145    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 255    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 255    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 256    | 165    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 257    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 257    | 175    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 258    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 260    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 260    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 260    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 260    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 260    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 260    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 261    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 261    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 264    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 264    | 155    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 265    | 175    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 265    | 200    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 268    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 268    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 268    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 269    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 269    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 269    | 175    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 270    | 200    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 271    | 205    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 273    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 274    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 275    | 235    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 275    | 190    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 276    | 220    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 276    | 525    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 277    | 200    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 277    | 200    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 278    | 200    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 278    | 200    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 278    | 210    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 279    | 205    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 280    | 205    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 280    | 205    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 282    | 205    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 283    | 195    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 284    | 230    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 285    | 220    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 287    | 205    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 287    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 288    | 230    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 290    | 215    | 0   | 0    |              | MC      |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 290    | 250    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 290    | 245    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 290    | 215    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 290    | 225    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 292    | 240    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 292    | 240    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 292    | 250    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 293    | 230    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 297    | 265    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 298    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 300    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 300    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 300    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 300    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 301    | 275    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 302    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 303    | 245    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 303    | 240    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 306    | 255    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 306    | 240    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 307    | 250    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 307    | 270    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 309    | 280    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 312    | 300    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 313    | 265    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 315    | 330    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 315    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 315    | 310    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 315    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 316    | 250    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 317    | 255    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 317    | 310    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 318    | 310    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 319    | 265    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 320    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 321    | 300    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 322    | 315    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 323    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 323    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 325    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 326    | 300    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 328    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 328    | 340    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 330    | 360    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 330    | 355    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 335    | 370    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 336    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 336    | 340    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 336    | 360    | 0   | 0    |              | MC      |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 337    | 360    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 337    | 340    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 337    | 340    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 337    | 355    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 337    | 325    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 339    | 395    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 340    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 340    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 342    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 344    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 345    | 385    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 347    | 450    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 348    | 380    | 0   | 0    |              | MC      |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 348    | 395    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 349    | 375    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 349    | 385    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 350    | 400    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 350    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 358    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 360    | 465    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 365    | 475    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 365    | 470    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 366    | 465    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 373    | 565    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 375    | 555    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 381    | 560    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 385    | 585    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 386    | 570    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 387    | 540    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 388    | 600    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 388    | 555    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 388    | 590    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 388    | 540    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 396    | 500    | 0   | 0    |              | MC      |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 397    | 540    | 0   | 0    |              | MC      |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 397    | 440    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 398    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 399    | 550    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 399    | 525    | 0   | 0    |              | MC      |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 400    | 600    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 400    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 400    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 400    | 610    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 401    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 403    | 660    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 405    | 655    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 405    | 585    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 406    | 570    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 407    | 555    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 409    | 570    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 410    | 640    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 412    | 705    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 413    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 413    | 735    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 415    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 415    | 710    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 420    | 675    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 421    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 421    | 640    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 422    | 675    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 423    | 750    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 423    | 615    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 426    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 426    | 695    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 428    | 690    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 429    | 750    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 429    | 685    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 430    | 660    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 431    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 434    | 825    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 435    | 775    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 436    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | RB      | 440    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 440    | 745    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 440    | 750    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 441    | 770    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 442    | 710    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 443    | 625    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 445    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 449    | 785    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 451    | 800    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 452    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 453    | 775    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 453    | 770    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 457    | 850    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 463    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 465    | 1195   | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 471    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 474    | 1015   | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 481    | 945    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 481    | 1100   | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 482    | 1150   | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 495    | 1050   | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 502    | 1030   | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 506    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 512    | 1320   | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | RB      | 512    | 1085   | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 199    | 65     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 205    | 80     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 207    | 75     | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | WCT     | 220    | 100    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 224    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 225    | 110    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 225    | 105    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 226    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 227    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 228    | 115    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 232    | 120    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 232    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 233    | 120    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 235    | 105    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 237    | 115    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 237    | 120    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 242    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 245    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 245    | 125    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 245    | 130    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 245    | 135    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 246    | 155    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 248    | 145    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 248    | 155    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 249    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 249    | 145    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 250    | 145    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 250    | 150    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 250    | 140    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 252    | 150    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 253    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | WCT     | 253    | 155    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 254    | 155    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 255    | 140    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 255    | 155    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 255    | 165    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 256    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 257    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 259    | 150    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 260    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 260    | 175    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 260    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 261    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 261    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 261    | 165    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 262    | 155    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 263    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 263    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 264    | 160    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 264    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 264    | 175    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 265    | 175    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 266    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 269    | 170    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 270    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 270    | 185    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 270    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 270    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 271    | 195    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | WCT     | 271    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 272    | 205    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 272    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 272    | 195    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 273    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 273    | 200    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 275    | 180    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 275    | 190    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 275    | 200    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 275    | 200    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 275    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 277    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 277    | 195    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 277    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 280    | 205    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 280    | 200    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 280    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 281    | 210    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 282    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 282    | 205    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 282    | 215    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 283    | 205    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 283    | 230    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 286    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 286    | 225    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 286    | 225    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 287    | 225    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 288    | 210    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | WCT     | 288    | 235    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 290    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 290    | 240    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 290    | 225    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 290    | 210    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 293    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 295    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 295    | 235    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 295    | 255    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 296    | 220    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 297    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 297    | 245    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 298    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 299    | 245    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 301    | 250    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 302    | 265    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 305    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 310    | 285    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 311    | 325    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 313    | 275    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 313    | 285    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 321    | 335    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 323    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 325    | 300    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 325    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 326    | 315    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 326    | 310    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 327    | 305    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | WCT     | 328    | 315    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 330    | 365    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 330    | 260    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 333    | 330    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 336    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 337    | 390    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 338    | 385    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 342    | 330    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 348    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 350    | 430    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 351    | 410    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 353    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 354    | 425    | 0   | 0    | hs           |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 355    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 356    | 370    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 358    | 490    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 366    | 460    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 370    | 465    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 370    | 530    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 370    | 495    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 370    | 440    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 372    | 450    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 377    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 379    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 383    | 570    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 385    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 386    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 387    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |

| Year | Species | Length | Weight | M/C | Mort | Hook<br>Scar | Disease | Tag | Genetics | Equipment     | Trip<br>Type |
|------|---------|--------|--------|-----|------|--------------|---------|-----|----------|---------------|--------------|
| 2011 | WCT     | 388    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 388    | 575    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 390    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 390    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 391    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 392    | 570    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 397    | 545    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 400    | 560    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 402    | 615    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 407    | 585    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 421    |        | 1   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 422    | 715    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 431    | 715    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |
| 2011 | WCT     | 452    | 895    | 0   | 0    |              |         |     |          | Jet Boat Boom | R            |

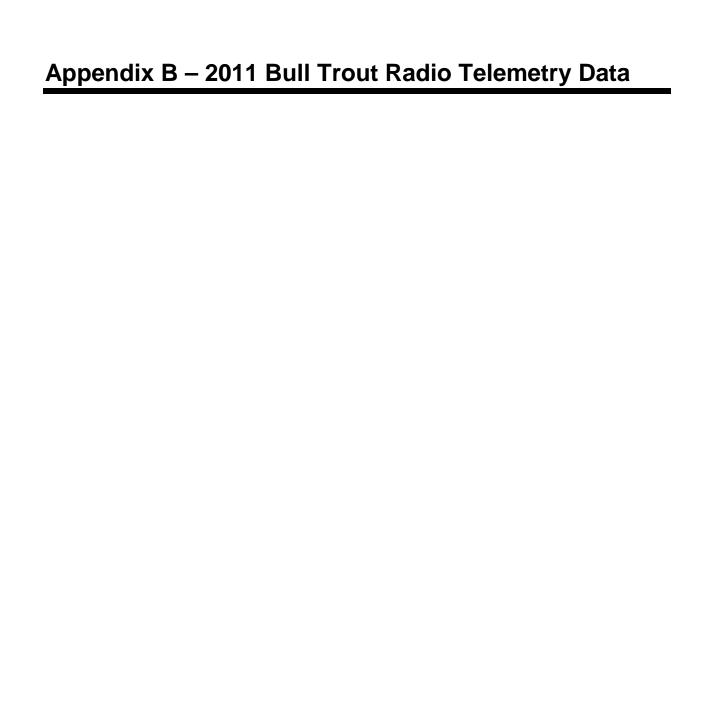



Table B-1. Radio tagged bull trout (codes 26, 27, 28, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40) that have been genetically assigned to Region 4 (Avista's Upstream Fish Passage Program) and monitored by FWP in 2010 and 2011 and radio tagged bull trout (codes 52, 100, 169) that have genetically assigned to Region 3 (Avista's Upstream Fish Passage Program and monitoring by FWP in 2010 and 2011.

| Date    | Radio<br>Frequency | Code | Stream         | Gain | Signal strength | Road           | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)    |
|---------|--------------------|------|----------------|------|-----------------|----------------|--------------|----------|-----------|---------------------------------|
| 4/23/11 | 148.480            | 26   | Clark Fork     | 80   | 158             | Blue Slide     | 19           | 47.81035 | 115.51326 | .25 mile above county boat ramp |
| 4/27/11 | 148.480            | 26   | Clark Fork     | 90   | 102             | Blue Slide     | 8.7          | 47.71889 | 115.41046 | Finley Flats                    |
| 5/4/11  | 148.480            | 26   | Clark Fork     | 90   | 102             | Blue Slide     | 8.8          | 47.72109 | 115.40988 | Finley Flats                    |
| 5/18/11 | 148.480            | 26   | Clark Fork     | 90   | 171             | HWY 200        | 47           | 47.63108 | 115.40715 | Flatiron boat launch            |
| 6/1/11  | 148.480            | 26   | Clark Fork     | 80   | 203             | na             | na           | 47.58288 | 115.35508 | Blue Cr, below PPL dam          |
| 6/6/11  | 148.480            | 26   | Clark Fork     | 80   | 168             | na             | na           | 47.59453 | 115.36217 | old powerhouse                  |
| 6/9/11  | 148.480            | 26   | Clark Fork     | 90   | 109             | HWY 200        | 49           | 47.60474 | 115.77743 | HWY bridge at Rimrock           |
| 6/15/11 | 148.480            | 26   | Clark Fork     | 80   | 166             | HWY 200        | 49           | 47.60469 | 115.37735 | HWY bridge at Rimrock           |
| 6/20/11 | 148.480            | 26   | Clark Fork     | 90   | 186             | HWY 200        | 49           | 47.60461 | 115.37731 | HWY bridge at Rimrock           |
| 6/27/11 | 148.480            | 26   | Prospect Creek | 80   | 228             | Cherry Cr Rd   | 0.7          | 47.58516 | 115.35588 | Dry Cr mouth                    |
| 6/30/11 | 148.480            | 26   | Prospect Creek | 80   | 121             | Prospect Cr Rd | 2            | 47.58179 | 115.36704 |                                 |
| 7/5/11  | 148.480            | 26   | Prospect Creek | 80   | 187             | Prospect Cr Rd | 5.1          | 47.56788 | 115.42886 |                                 |
| 7/13/11 | 148.480            | 26   | Prospect Creek | 80   | 157             | Prospect Cr Rd | 6.8          | 47.56331 | 115.46192 |                                 |
| 7/18/11 | 148.480            | 26   | Prospect Creek | 80   | 170             | Prospect Cr Rd | 6.3          | 47.56360 | 115.45207 |                                 |

| Date     | Radio<br>Frequency | Code | Stream         | Gain | Signal strength | Road           | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)                  |
|----------|--------------------|------|----------------|------|-----------------|----------------|--------------|----------|-----------|-----------------------------------------------|
| 7/21/11  | 148.480            | 26   | Prospect Creek | 80   | 144             | Prospect Cr Rd | 7            | 47.56248 | 115.46701 | below Sourdough                               |
| 8/1/11   | 148.480            | 26   | Prospect Creek | 75   | 139             | Prospect Cr Rd | 7.5          | 47.56199 | 115.47596 | above Sourdough                               |
| 8/8/11   | 148.480            | 26   | Prospect Creek | 80   | 165             | Prospect Cr Rd | 6.4          | 47.56313 | 115.45293 |                                               |
| 8/15/11  | 148.480            | 26   | Prospect Creek | 70   | 196             | Prospect Cr Rd | 4.4          | 47.56853 | 115.41390 | Avista weir site                              |
| 8/22/11  | 148.480            | 26   | Prospect Creek | 70   | 184             | Prospect Cr Rd | 4.4          | 47.56847 | 115.41393 |                                               |
| 8/30/11  | 148.480            | 26   | Prospect Creek | 80   | 140             | Prospect Cr Rd | 6.4          | 47.56248 | 115.45430 |                                               |
| 9/6/11   | 148.480            | 26   | Prospect Creek | 80   | 180             | Prospect Cr Rd | 6.4          | 47.56306 | 115.45452 |                                               |
| 9/9/11   | 148.480            | 26   | Prospect Creek | 90   | 194             | Prospect Cr Rd | 6.4          | 47.56340 | 115.45436 |                                               |
| 9/13/11  | 148.480            | 26   | Prospect Creek | 70   | 131             | Prospect Cr Rd | 7.3          | 47.56224 | 115.47384 | just above Sourdough                          |
| 9/19/11  | 148.480            | 26   | Prospect Creek | 80   | 185             | Prospect Cr Rd | 6.4          | 47.56307 | 115.45436 |                                               |
| 9/29/11  | 148.480            | 26   | Prospect Creek | 90   | 164             | Prospect Cr Rd | 6.6          | 47.56353 | 115.45865 |                                               |
| 10/7/11  | 148.480            | 26   | Prospect Creek | 80   | 201             | Prospect Cr Rd | 6.4          | 47.56304 | 115.45448 |                                               |
| 10/17/11 | 148.480            | 26   | Prospect Creek | 80   | 202             | Prospect Cr Rd | 6.4          | 47.56306 | 115.45456 |                                               |
| 10/18/11 | 148.480            | 26   | Prospect Creek | 30   | 232             | Prospect Cr Rd | 6.4          | 47.56264 | 115.45694 | visual confirmation with Yagi pool above weir |
| 10/24/11 | 148.480            | 26   | Prospect Creek | 80   | 71              | Prospect Cr Rd | 1.6          | 47.58585 | 115.36336 |                                               |
| 6/30/10  | 148.480            | 27   | Thompson R     | 70   | 225             | ACM            | 0.6          | 47.58711 | 115.23331 | at bridge, released 6/30/10<br>1400hrs        |

| Date    | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road       | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)   |
|---------|--------------------|------|------------|------|-----------------|------------|--------------|----------|-----------|--------------------------------|
| 7/1/10  | 148.480            | 27   | Thompson R | 80   | 217             | ACM        | 0.7          | 47.58714 | 115.23407 | 100m above ACM bridge          |
| 7/2/10  | 148.480            | 27   | Thompson R | 60   | 124             | ACM        | 0.6          | 47.58727 | 115.23339 | ACM bridge                     |
| 7/6/10  | 148.480            | 27   | Thompson R | 80   | 213             | ACM        | 0.6          | 47.58774 | 115.23288 | ACM bridge                     |
| 7/8/10  | 148.480            | 27   | Thompson R | 70   | 231             | ACM        | 0.7          | 47.58876 | 115.23284 | 125m above bridge              |
| 7/9/10  | 148.480            | 27   | Thompson R | 80   | 204             | ACM        | 0.6          | 47.58887 | 115.23284 | above ACM bridge               |
| 7/12/10 | 148.480            | 27   | Thompson R | 80   | 184             | ACM        | 0.6          | 47.58745 | 115.23296 | ACM bridge                     |
| 7/14/10 | 148.480            | 27   | Thompson R | 80   | 189             | ACM        | 0.6          | 47.58947 | 115.23331 | ACM bridge                     |
| 7/19/10 | 148.480            | 27   | Thompson R | 60   | 199             | Thompson R | 0.7          | 47.58868 | 115.23276 | 100m above ACM bridge          |
| 7/21/10 | 148.480            | 27   | Thompson R | 80   | 210             | Thompson R | 0.8          | 47.59105 | 115.23138 |                                |
| 7/22/10 | 148.480            | 27   | Clark Fork | 60   | 204             | frontage   | na           | 47.57677 | 115.24043 | just below TR mouth            |
| 7/24/10 | 148.480            | 27   | Thompson R | 80   | 88              | ACM        | 0            | na       | na        | at ACM/HWY 200<br>intersection |
| 7/28/10 | 148.480            | 27   | Thompson R | 80   | 200             | na         | na           | 47.57677 | 115.24043 | mouth of Thompson R            |
| 7/30/10 | 148.480            | 27   | Thompson R | 90   | 90              | ACM        | 0            | na       | na        | below HWY 200 bridge           |
| 8/3/10  | 148.480            | 27   | Thompson R | 90   | 125             | ACM        | 0            | na       | na        | below HWY 200 bridge           |
| 8/6/10  | 148.480            | 27   | Clark Fork | 60   | 125             | na         | na           | 47.57732 | 115.24095 | TR mouth                       |
| 8/10/10 | 148.480            | 27   | Clark Fork | 60   | 186             | na         | na           | 47.57735 | 115.24092 | TR mouth                       |

| Date    | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road                   | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)                         |
|---------|--------------------|------|------------|------|-----------------|------------------------|--------------|----------|-----------|------------------------------------------------------|
| 8/11/10 | 148.480            | 27   | Clark Fork | 80   | 68              | na                     | na           | 47.57676 | 115.24757 | TR mouth                                             |
| 8/16/10 | 148.480            | 27   | Clark Fork | 30   | 200             | boat                   | na           | 47.57641 | 115.24079 | TR mouth                                             |
| 8/23/10 | 148.480            | 27   | Clark Fork | 60   | 149             | na                     | na           | 47.57710 | 115.24148 | TR mouth                                             |
| 9/27/10 | 148.480            | 27   | Clark Fork | 60   | 211             | na                     | na           | 47.59018 | 115.35304 | below PPL dam                                        |
| 9/28/10 | 148.480            | 27   | Clark Fork | 80   | 163             | na                     | na           | 47.59041 | 115.35838 | Prospect mouth                                       |
| 10/8/10 | 148.480            | 27   | Clark Fork | 80   | 144             | na                     | na           | 47.59466 | 115.36194 | old powerhouse                                       |
| 5/20/10 | 148.480            | 28   | Clark Fork |      |                 | na                     | na           |          |           | picked up at Hilltop remote,<br>went through turbine |
| 5/24/10 | 148.480            | 28   | Clark Fork | 80   | 178             | na                     | na           | 47.59448 | 115.36222 | old powerhouse                                       |
| 5/26/10 | 148.480            | 28   | Clark Fork | 80   | 153             | na                     | na           | 47.59467 | 115.36245 | old powerhouse                                       |
| 5/28/10 | 148.480            | 28   | Clark Fork | 80   | 171             | na                     | na           | 47.59448 | 115.36205 | old powerhouse                                       |
| 6/1/10  | 148.480            | 28   | Clark Fork | 80   | 139             | na                     | na           | 47.59468 | 115.36197 | old powerhouse                                       |
| 6/2/10  | 148.480            | 28   | Clark Fork | 80   | 109             | n                      | na           | 47.59466 | 115.36195 | old powerhouse                                       |
| 5/4/11  | 148.480            | 29   | Clark Fork | 90   | 169             | Blue Slide             | 21.9         | 47.84022 | 115.57545 | across from Trout Creek town                         |
| 6/23/11 | 148.480            | 29   | Clark Fork | 95   | 69              | Marten Cr<br>Rd/FS2229 | 4.5          | 47.85930 | 115.66754 | below train trestle                                  |
| 7/5/11  | 148.480            | 29   | Clark Fork | 98   | 63              | Marten Cr<br>Rd/FS2229 | 4.8          | 47.86090 | 115.67132 | below train trestle                                  |
| 7/18/11 | 148.480            | 29   | Clark Fork | 95   | 66              | Marten Cr<br>Rd/FS2229 | 4.7          | 47.86035 | 115.67057 | below train trestle                                  |

| Date     | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road                   | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)                                             |
|----------|--------------------|------|------------|------|-----------------|------------------------|--------------|----------|-----------|--------------------------------------------------------------------------|
| 7/21/11  | 148.480            | 29   | Clark Fork | 98   | 76              | Marten Cr<br>Rd/FS2229 | 4.3          | 47.85836 | 115.66293 | below train trestle                                                      |
| 8/1/11   | 148.480            | 29   | Clark Fork | 98   | 58              | Marten Cr<br>Rd/FS2229 | 4.5          | 47.85932 | 115.66753 | below train trestle                                                      |
| 9/19/11  | 148.480            | 29   | Clark Fork | 98   | 75              | Marten Cr<br>Rd/FS2229 | 4            | 47.85817 | 115.65722 | below train trestle                                                      |
| 10/7/11  | 148.480            | 29   | Clark Fork | 95   | 79              | Marten Cr<br>Rd/FS2229 | 7            | 47.87545 | 115.72206 |                                                                          |
| 10/26/11 | 148.480            | 29   | Clark Fork | 98   | 80              | Marten Cr<br>Rd/FS2229 | 4            | 47.85815 | 115.65738 | below train trestle                                                      |
| 11/18/11 | 148.480            | 29   | Clark Fork | 99   | 79              | Marten Cr<br>Rd/FS2229 | 4            | 47.85538 | 115.65742 | below train trestle                                                      |
| 11/28/11 | 148.480            | 29   | Clark Fork | 99   | 75              | Marten Cr<br>Rd/FS2229 | 4.1          | 47.85813 | 115.65991 | below train trestle                                                      |
| 12/19/11 | 148.480            | 29   | Clark Fork | 95   | 86              | Marten Cr<br>Rd/FS2229 | 4.7          | na       | na        |                                                                          |
| 5/13/10  | 148.480            | 30   | Thompson R | 90   | 110             | boat                   | na           | 47.57638 | 115.24066 | between railroad & hwy<br>bridge, transport 5/12/10 to<br>.6 miles up TR |
| 5/14/10  | 148.480            | 30   | Thompson R | 80   | 89              | TR (ACM)               | 0.1          | 47.58134 | 115.23888 | above hwy bridge                                                         |
| 5/15/10  | 148.480            | 30   | Thompson R | 80   | 101             | TR (ACM)               | 0.1          | 47.58134 | 115.23888 | above hwy bridge                                                         |
| 5/17/10  | 148.480            | 30   | Thompson R | 80   | 153             | HWY 200                | 56           | 47.57962 | 115.24050 | hwy bridge                                                               |
| 5/18/10  | 148.480            | 30   | Thompson R | 80   | 109             | HWY 200                | 56           | 47.57962 | 115.24050 | hwy bridge                                                               |
| 5/19/10  | 148.480            | 30   | Thompson R | 30   | 115             | foot                   | na           | 47.57785 | 115.23987 | above train trestle at mouth                                             |
| 5/20/10  | 148.480            | 30   | Thompson R | 30   | 119             | foot                   | na           | 47.57785 | 115.23987 | above train trestle at mouth                                             |
| 5/21/10  | 148.480            | 30   | Thompson R | 50   | 112             | TR access              | na           | 47.57777 | 115.24044 | above train trestle at mouth                                             |

| Date    | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road        | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)            |
|---------|--------------------|------|------------|------|-----------------|-------------|--------------|----------|-----------|-----------------------------------------|
| 5/21/10 | 148.480            | 30   | Thompson R | 50   | 112             | TR access   | na           | 47.57777 | 115.24044 | above train trestle at mouth            |
| 5/24/10 | 148.480            | 30   | Thompson R | 80   | 188             | TR access   | na           | 47.57778 | 115.24063 | above train trestle at mouth            |
| 5/25/10 | 148.480            | 30   | Thompson R | 50   | 201             | boat        | na           | 47.57777 | 115.23952 | above train trestle at mouth            |
| 5/26/10 | 148.480            | 30   | Thompson R | 80   | 195             | TR access   | na           | 47.57783 | 115.24061 | above train trestle at mouth            |
| 5/28/10 | 148.480            | 30   | Clark Fork | 80   | 104             | dump road   | na           | 47.57689 | 115.24777 | at dump                                 |
| 6/1/10  | 148.480            | 30   | Clark Fork | 90   | 91              | Northshore  | lot 47       | na       | na        |                                         |
| 6/2/10  | 148.480            | 30   | Clark Fork | 90   | 85              | Northshore  | lot 43       | 47.57096 | 115.26435 |                                         |
| 6/3/10  | 148.480            | 30   | Clark Fork | 50   | 145             | boat        | na           | 47.57052 | 115.26275 | .5 mile above Cherry Cr river right     |
| 6/4/10  | 148.480            | 30   | Clark Fork | 60   | 162             | boat        | na           | 47.56900 | 115.30045 | 100m upstream of powerlines mid channel |
| 6/7/10  | 148.480            | 30   | Clark Fork | 60   | 200             | boat        | na           | 47.57039 | 115.30750 | 400m below powerline left bank          |
| 6/10/10 | 148.480            | 30   | Clark Fork | 60   | 205             | boat        | na           | 47.58167 | 115.32096 | 100m below pipeline right bank          |
| 6/14/10 | 148.480            | 30   | Clark Fork | 90   | 123             | Steamboat E | na           | 47.57082 | 115.30300 | Salish Shores boat launch               |
| 6/14/10 | 148.480            | 30   | Clark Fork | 60   | 64              | boat        | na           | 47.57570 | 115.25463 | across from TRL 600m<br>below TR mouth  |
| 6/14/10 | 148.480            | 30   | Clark Fork | 70   | 215             | boat        | na           | 47.59568 | 115.24463 | 300m below TR mouth                     |
| 6/14/10 | 148.480            | 30   | Clark Fork | 70   | na              | boat        | na           | na       | na        | 340m below TR mouth                     |
| 6/14/10 | 148.480            | 30   | Clark Fork | 70   | 204             | boat        | na           | 47.57575 | 115.24452 | in TR plume                             |

| Date    | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road     | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)                |
|---------|--------------------|------|------------|------|-----------------|----------|--------------|----------|-----------|---------------------------------------------|
| 6/15/10 | 148.480            | 30   | Clark Fork | 70   | na              | boat     | na           | 47.57535 | 115.24452 | in TR plume                                 |
| 6/15/10 | 148.480            | 30   | Clark Fork | 70   | 226             | boat     | na           | 47.57584 | 115.24458 | 220m below TR mouth                         |
| 6/15/10 | 148.480            | 30   | Clark Fork | 60   | 229             | boat     | na           | 47.57596 | 115.24430 | 200m below TR mouth river<br>right H2O 11.7 |
| 6/15/10 | 148.480            | 30   | Clark Fork | 60   | 225             | boat     | na           | 47.57584 | 115.24456 | 250m below TR mouth                         |
| 6/16/10 | 148.480            | 30   | Clark Fork | 50   | 157             | frontage | na           | 47.57722 | 115.24132 | 50m below TR mouth river right              |
| 6/17/10 | 148.480            | 30   | Clark Fork | 60   | 199             | frontage | na           | 47.57615 | 115.24440 | 200m below TR mouth                         |
| 6/21/10 | 148.480            | 30   | Clark Fork | 60   | 203             | frontage | na           | 47.57664 | 115.24330 | 200m below TR mouth river right             |
| 6/22/10 | 148.480            | 30   | Clark Fork | 60   | 209             | frontage | na           | 47.57668 | 115.24368 | 200m below TR mouth river right             |
| 6/24/10 | 148.480            | 30   | Clark Fork | 60   | 223             | frontage | na           | 47.57560 | 115.24568 | 300m below TR mouth                         |
| 6/28/10 | 148.480            | 30   | Clark Fork | 60   | 202             | frontage | na           | 47.57736 | 115.24047 | 150m below TR mouth river right             |
| 6/30/10 | 148.480            | 30   | Thompson R | 60   | 232             | frontage | na           | 47.57769 | 115.24010 | 100m up TR                                  |
| 7/1/10  | 148.480            | 30   | Clark Fork | 80   | 175             | frontage | na           | 47.57741 | 115.74099 | TR mouth                                    |
| 7/2/10  | 148.480            | 30   | Clark Fork | 80   | 161             | frontage | na           | 47.57743 | 115.24098 | TR mouth                                    |
| 7/6/10  | 148.480            | 30   | Thompson R | 80   | 61              | ACM      | na           | 47.58092 | 115.23995 | 200m above HWY 200<br>bridge                |
| 7/12/10 | 148.480            | 30   | Clark Fork | 80   | 98              | N.Shore  | house<br>#77 | 47.56872 | 115.27041 | Cherry Cr mouth                             |
| 7/14/10 | 148.480            | 30   | Clark Fork | 80   | 106             | N.Shore  | house<br>#79 | 47.56492 | 115.26970 | Cherry Cr mouth                             |

| Date    | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road           | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)   |
|---------|--------------------|------|------------|------|-----------------|----------------|--------------|----------|-----------|--------------------------------|
| 7/19/10 | 148.480            | 30   | Clark Fork | 60   | 196             | frontage       | na           | 47.57747 | 115.24103 | TR mouth                       |
| 7/22/10 | 148.480            | 30   | Clark Fork | 60   | 202             | frontage       | na           | 47.57677 | 115.24043 | just below TR mouth            |
| 7/24/10 | 148.480            | 30   | Thompson R | 80   | na              | ACM            | 0            | na       | na        | at ACM/HWY 200<br>intersection |
| 7/28/10 | 148.480            | 30   | Thompson R | 80   | 182             | na             | na           | 47.57677 | 115.24043 | mouth of Thompson R            |
| 7/30/10 | 148.480            | 30   | Thompson R | 90   | na              | ACM            | 0            | na       | na        | below HWY 200 bridge           |
| 8/3/10  | 148.480            | 30   | Thompson R | 90   | 82              | ACM            | 0            | na       | na        | below HWY 200 bridge           |
| 8/6/10  | 148.480            | 30   | Clark Fork | 60   | 169             | na             | na           | 47.57732 | 115.24095 | TR mouth                       |
| 8/10/10 | 148.480            | 30   | Clark Fork | 60   | 174             | na             | na           | 47.57735 | 115.24092 | TR mouth                       |
| 8/11/10 | 148.480            | 30   | Clark Fork | 80   | 82              | na             | na           | 47.57676 | 115.24757 | TR mouth                       |
| 8/16/10 | 148.480            | 30   | Clark Fork | 30   | 204             | boat           | na           | 47.57641 | 115.24079 | TR mouth                       |
| 8/23/10 | 148.480            | 30   | Clark Fork | 60   | 155             | na             | na           | 47.57710 | 115.24148 | TR mouth                       |
| 8/30/10 | 148.480            | 30   | Clark Fork | 60   | 172             | na             | na           | 47.57706 | 115.24155 | TR mouth                       |
| 9/7/10  | 148.480            | 30   | Clark Fork | 80   | 164             | na             | na           | 47.57733 | 115.24349 | TR mouth                       |
| 9/14/10 | 148.480            | 30   | Clark Fork | 90   | 76              | HWY 200 bridge |              | 47.57966 | 115.24068 | TR mouth                       |
| 9/20/10 | 148.480            | 30   | Clark Fork | 90   | 74              | HWY 200 bridge |              | 47.57962 | 115.24045 | TR mouth                       |
| 9/28/10 | 148.480            | 30   | Clark Fork | 50   | 231             | boat           | na           | 47.57633 | 115.24090 | TR mouth                       |

| Date     | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road    | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)       |
|----------|--------------------|------|------------|------|-----------------|---------|--------------|----------|-----------|------------------------------------|
| 10/5/10  | 148.480            | 30   | Clark Fork | 80   | 91              | na      | na           | na       | na        | TR mouth                           |
| 10/8/10  | 148.480            | 30   | Clark Fork | 80   | 84              | na      | na           | 47.57681 | 115.24747 | TR mouth                           |
| 10/18/10 | 148.480            | 30   | Clark Fork | 80   | 57              | na      | na           | 47.57723 | 115.24135 | above TR mouth                     |
| 10/26/10 | 148.480            | 30   | Clark Fork | 95   | 92              | HWY 200 | 56           | 47.57946 | 115.22974 | above TR mouth                     |
| 12/17/10 | 148.480            | 30   | Clark Fork | 80   | 165             | HWY 200 | 63.5         | na       | na        | Eddy Creek mouth                   |
| 1/5/11   | 148.480            | 30   | Clark Fork | 90   | 97              | HWY 200 | 68           | 47.52525 | 115.00317 | just below Weeksville Cr           |
| 1/7/11   | 148.480            | 30   | Clark Fork | 90   | 78              | HWY 200 | 67.1         | 47.52605 | 115.02541 | Swamp Cr mouth                     |
| 1/10/11  | 148.480            | 30   | Clark Fork | 90   | 87              | HWY 200 | 66           | 47.53266 | 115.04972 | below Swamp Cr, Lawyers<br>nursery |
| 1/14/11  | 148.480            | 30   | Clark Fork | 90   | 104             | HWY 200 | 65           | 47.53600 | 115.06677 | 2 miles below Swamp Cr<br>mouth    |
| 1/21/11  | 148.480            | 30   | Clark Fork | 90   | 116             | HWY 200 | 63.5         | 47.54658 | 115.09991 | Eddy Creek mouth                   |
| 1/25/11  | 148.480            | 30   | Clark Fork | 90   | 115             | HWY 200 | 57.8         | 47.58399 | 115.20629 | islands, at rock quarry            |
| 1/28/11  | 148.480            | 30   | Clark Fork | 90   | 121             | HWY 200 | 57.8         | 47.58399 | 115.20629 | islands, at rock quarry            |
| 2/1/11   | 148.480            | 30   | Clark Fork | 90   | 49-96           | HWY 200 | 57.8         | 47.58399 | 115.20629 | islands, at rock quarry            |
| 2/3/11   | 148.480            | 30   | Clark Fork | 95   | 66              | HWY 200 | 58.3         | 47.58236 | 115.18996 | islands, much ice                  |
| 2/7/11   | 148.480            | 30   | Clark Fork | 95   | 104             | HWY 200 | 58.3         | 47.58236 | 115.18996 | islands, no ice                    |
| 2/15/11  | 148.480            | 30   | Clark Fork | 95   | 82              | HWY 200 | 57.1         | 47.58251 | 115.21376 | .5 miles above TR mouth            |

| Date    | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road    | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)     |
|---------|--------------------|------|------------|------|-----------------|---------|--------------|----------|-----------|----------------------------------|
| 2/22/11 | 148.480            | 30   | Clark Fork | 95   | 76              | HWY 200 | 57.1         | 47.58251 | 115.21376 | .5 miles above TR mouth          |
| 2/25/11 | 148.480            | 30   | Clark Fork | 95   | 66              | HWY 200 | 56.8         | 47.57979 | 115.22678 | .25 miles above TR               |
| 3/2/11  | 148.480            | 30   | Clark Fork | 95   | 143             | HWY 200 | 62.2         | 47.55301 | 115.12120 | Munson Cr mouth                  |
| 3/7/11  | 148.480            | 30   | Clark Fork | 85   | 127             | HWY 200 | 58.8         | 47.58176 | 115.18587 | Islands                          |
| 3/11/11 | 148.480            | 30   | Clark Fork | 85   | 180             | HWY 200 | 58.8         | 47.58194 | 115.18613 | Islands                          |
| 3/14/11 | 148.480            | 30   | Clark Fork | 85   | 171             | HWY 200 | 58.8         | 47.58187 | 115.18624 | Islands                          |
| 3/23/11 | 148.480            | 30   | Clark Fork | 80   | 154             | HWY 200 | 52           | 47.59008 | 115.32586 | TF reservoir                     |
| 3/30/11 | 148.480            | 30   | Clark Fork | 90   | na              | HWY 200 | 51.5         | 47.59262 | 115.33307 | TF reservoir                     |
| 4/6/11  | 148.480            | 30   | Clark Fork | 90   | 128             | HWY 200 | 51.75        | 47.59200 | 115.32855 | TF reservoir                     |
| 4/12/11 | 148.480            | 30   | Clark Fork | 80   | 203             | HWY 200 | 52           | 47.58882 | 115.32504 | NE corner TF res, with Yagui     |
| 4/27/11 | 148.480            | 30   | Clark Fork | 80   | 93              | HWY 200 | 52           | 47.58981 | 115.32486 | TF reservoir, north of pumphouse |
| 5/4/11  | 148.480            | 30   | Clark Fork | 80   | 155             | HWY 200 | 52           | 47.58935 | 115.32488 | TF reservoir, north of pumphouse |
| 5/9/11  | 148.480            | 30   | Clark Fork | 80   | 178             | HWY 200 | 52           | 47.58921 | 115.32478 | TF reservoir, north of pumphouse |
| 5/18/11 | 148.480            | 30   | Clark Fork | 80   | 182             | HWY 200 | 52           | 47.58942 | 115.22485 | TF reservoir, north of pumphouse |
| 5/26/11 | 148.480            | 30   | Clark Fork | 80   | 170             | HWY 200 | 52           | 47.58941 | 115.32485 | TF reservoir, north of pumphouse |
| 6/1/11  | 148.480            | 30   | Clark Fork | 80   | 192             | HWY 200 | 52           | 47.58934 | 115.32488 | TF reservoir, north of pumphouse |

| Date    | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road        | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)                           |
|---------|--------------------|------|------------|------|-----------------|-------------|--------------|----------|-----------|--------------------------------------------------------|
| 6/6/11  | 148.480            | 30   | Clark Fork | 70   | 151             | HWY 200     | 52           | 47.58934 | 115.32486 | TF reservoir, north of pumphouse                       |
| 6/9/11  | 148.480            | 30   | Clark Fork | 80   | 185             | HWY 200     | 52           | 47.58959 | 115.32488 | TF reservoir, north of pumphouse                       |
| 6/15/11 | 148.480            | 30   | Clark Fork | 80   | 190             | HWY 200     | 52           | 47.58935 | 115.32481 | TF reservoir, north of pumphouse                       |
| 6/20/11 | 148.480            | 30   | Clark Fork | 80   | 188             | HWY 200     | 52           | 47.58929 | 115.32484 | TF reservoir, north of pumphouse                       |
| 6/23/11 | 148.480            | 30   | Clark Fork | 80   | 195             | HWY 200     | 52           | na       | na        | TF reservoir, north of pumphouse                       |
| 6/27/11 | 148.480            | 30   | Clark Fork | 80   | 187             | HWY 200     | 52           | 47.58941 | 115.32484 | TF reservoir, north of pumphouse                       |
| 6/30/11 | 148.480            | 30   | Clark Fork | 80   | 198             | HWY 200     | 52           | 47.58935 | 115.32486 | TF reservoir, north of pumphouse                       |
| 7/5/11  | 148.480            | 30   | Clark Fork | 80   | 171             | HWY 200     | 52           | 47.58934 | 115.32484 | TF reservoir, north of pumphouse                       |
| 7/13/11 | 148.480            | 30   | Clark Fork | 80   | 188             | HWY 200     | 52           | 47.58937 | 115.32485 | TF resrvoir, north of pumphouse                        |
| 7/18/11 | 148.480            | 30   | Clark Fork | 80   | 189             | HWY 200     | 52           | 47.58946 | 115.32487 | TF reservoir, north of pumphouse                       |
| 7/21/11 | 148.480            | 30   | Clark Fork | 80   | 189             | HWY 200     | 52           | 47.58946 | 115.32487 | TF reservoir, north of pumphouse                       |
| 8/1/11  | 148.480            | 30   | Clark Fork | 80   | 200             | HWY 200     | 52           | 47.58923 | 115.32473 | TF reservoir, north of pumphouse, retrieve tag no fish |
| 5/20/10 | 148.480            | 31   | Clark Fork | 80   | 156             | dump road   | na           | 47.57690 | 115.24738 | at dump                                                |
| 5/20/10 | 148.480            | 31   | Clark Fork | 80   | 169             | dump road   | na           | 47.57680 | 115.24769 | at dump                                                |
| 5/21/10 | 148.480            | 31   | Clark Fork | 80   | 169             | dump road   | na           | 47.57690 | 115.24738 | at dump                                                |
| 5/24/10 | 148.480            | 31   | Clark Fork | 80   | 134             | Steamboat E | lot 116      | 47.56860 | 115.28275 |                                                        |

| Date    | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road        | Mile<br>Post   | Latitude | Longitude | Notes (i.e., about location)               |
|---------|--------------------|------|------------|------|-----------------|-------------|----------------|----------|-----------|--------------------------------------------|
| 5/25/10 | 148.480            | 31   | Clark Fork | 50   | 204             | boat        | na             | 47.56897 | 115.22995 | TF res above powerlines                    |
| 5/26/10 | 148.480            | 31   | Clark Fork | 90   | 112             | Steamboat E | na             | 47.57091 | 115.30348 | at Salish Shores boat launch               |
| 5/28/10 | 148.480            | 31   | Clark Fork | 80   | 124             | SteamboatW  | lot 11         | 47.57368 | 115.31189 |                                            |
| 6/1/10  | 148.480            | 31   | Clark Fork | 80   | 94              | SteamboatW  | lot 15         | 47.57376 | 115.31223 |                                            |
| 6/2/10  | 148.480            | 31   | Clark Fork | 80   | 159             | Northshore  | boat<br>launch | 47.56879 | 115.26843 |                                            |
| 6/3/10  | 148.480            | 31   | Clark Fork | 50   | 211             | boat        | na             | 47.56653 | 115.27349 | .25 mile below Cherry Cr<br>river left     |
| 6/4/10  | 148.480            | 31   | Clark Fork | 60   | 204             | boat        | na             | 47.56641 | 115.27055 | 20m below Cherry Cr river<br>left H2O 10.4 |
| 6/7/10  | 148.480            | 31   | Clark Fork | 60   | 166             | boat        | na             | 47.56860 | 115.29816 | 200m above powerline left bank             |
| 6/10/10 | 148.480            | 31   | Clark Fork | 60   | 229             | boat        | na             | 47.56646 | 115.27111 | 100m below Cherry Cr left bank             |
| 6/14/10 | 148.480            | 31   | Clark Fork | 90   | 182             | dump road   | na             | 47.57651 | 115.25039 | at dump                                    |
| 6/14/10 | 148.480            | 31   | Clark Fork | 30   | 159             | boat        | na             | 47.57652 | 115.24231 | 150m below TR mouth river right            |
| 6/14/10 | 148.480            | 31   | Clark Fork | 70   | 215             | boat        | na             | 47.57636 | 115.24227 | 100m below TR mouth river right            |
| 6/14/10 | 148.480            | 31   | Clark Fork | 70   | na              | boat        | na             | 47.57636 | 115.24227 | 100m below TR mouth river right            |
| 6/14/10 | 148.480            | 31   | Clark Fork | 70   | 199             | boat        | na             | 47.57668 | 115.24180 | 100m below TR mouth river right            |
| 6/15/10 | 148.480            | 31   | Clark Fork | 70   | na              | boat        | na             | 47.57668 | 115.24180 | 100m below TR mouth river right            |
| 6/15/10 | 148.480            | 31   | Clark Fork | 70   | 231             | boat        | na             | 47.57658 | 115.24159 | 80m below TR mouth                         |

| Date    | Radio<br>Frequency | Code | Stream      | Gain | Signal strength | Road       | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)                     |
|---------|--------------------|------|-------------|------|-----------------|------------|--------------|----------|-----------|--------------------------------------------------|
| 6/15/10 | 148.480            | 31   | Clark Fork  | 60   | 232             | boat       | na           | 47.57642 | 115.24187 | 80m below TR mouth river right H2O 11.7          |
| 6/15/10 | 148.480            | 31   | Clark Fork  | 60   | 226             | boat       | na           | 47.57655 | 115.24126 | 50m below TR mouth river right H2O 11.8          |
| 6/16/10 | 148.480            | 31   | Clark Fork  | 50   | 181             | frontage   | na           | 47.57722 | 115.24132 | 50m below TR mouth river right                   |
| 6/17/10 | 148.480            | 31   | Clark Fork  | 60   | 207             | frontage   | na           | 47.57746 | 115.24125 | 50m below TR mouth                               |
| 6/21/10 | 148.480            | 31   | Clark Fork  | 60   | 226             | frontage   | na           | 47.57686 | 115.24211 | 100m below TR mouth river right                  |
| 6/22/10 | 148.480            | 31   | Clark Fork  | 60   | 229             | frontage   | na           | 47.57668 | 115.24221 | 125m below TR mouth river right                  |
| 6/24/10 | 148.480            | 31   | Clark Fork  | 60   | 217             | frontage   | na           | 47.57690 | 115.24236 | 125m below TR mouth river right                  |
| 6/28/10 | 148.480            | 31   | Thompson R  | 60   | 232             | frontage   | na           | 47.57739 | 115.24020 | 50m up TR                                        |
| 6/30/10 | 148.480            | 31   | Thompson R  | 70   | 168             | ACM        | 1.5          | 47.59686 | 115.22365 |                                                  |
| 7/1/10  | 148.480            | 31   | Thompson R  | 80   | 189             | ACM        | 3.2          | 47.61016 | 115.19520 |                                                  |
| 7/2/10  | 148.480            | 31   | Thompson R  | 60   | 230             | ACM        | 5            | 47.63056 | 115.17496 | big hole below Clark<br>Memorial campground      |
| 7/6/10  | 148.480            | 31   | Thompson R  | 80   | 170             | ACM        | 5.4          | 47.63896 | 115.17175 |                                                  |
| 7/8/10  | 148.480            | 31   | Thompson R  | 80   | 161             | Thompson R | 9.4          | 47.66320 | 115.12171 |                                                  |
| 7/12/10 | 148.480            | 31   | Fishtrap Cr | 80   | 186             | FS 516     | 0.4          | 47.71761 | 115.05696 |                                                  |
| 7/14/10 | 148.480            | 31   | Thompson R  | 90   | 84              | Thompson R | 15           | 47.71402 | 115.05495 | .25 mile above Fishtrap<br>mouth                 |
| 7/15/10 | 148.480            | 31   | Thompson R  | 95   | 88              | ACM        | 17           | 47.72984 | 115.02974 | just below 17 mile bridge,<br>intermitent chirps |

| Date    | Radio<br>Frequency | Code | Stream      | Gain | Signal strength | Road       | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location) |
|---------|--------------------|------|-------------|------|-----------------|------------|--------------|----------|-----------|------------------------------|
| 7/16/10 | 148.480            | 31   | Thompson R  | 35   | 205             | Thompson R | 12           | 47.68984 | 115.09123 |                              |
| 7/19/10 | 148.480            | 31   | Thompson R  | 80   | 171             | Thompson R | 12.3         | 47.68997 | 115.09199 |                              |
| 7/21/10 | 148.480            | 31   | Thompson R  | 80   | 156             | Thompson R | 14.8         | 47.70715 | 115.07501 |                              |
| 7/22/10 | 148.480            | 31   | Thompson R  | 80   | 184             | Thompson R | 14.3         | 47.71072 | 115.07312 |                              |
| 7/24/10 | 148.480            | 31   | Thompson R  | 80   | 231             | ACM        | 14.3         | 47.71036 | 115.06833 |                              |
| 7/27/10 | 148.480            | 31   | Fishtrap Cr | 60   | 162             | FS 516     | 0.5          | 47.71915 | 115.05937 |                              |
| 7/28/10 | 148.480            | 31   | Fishtrap Cr | 80   | 211             | FS 516     | 0.5          | 47.71915 | 115.05937 |                              |
| 7/30/10 | 148.480            | 31   | Fishtrap Cr | 80   | 181             | FS 516     | 0.6          | 47.71858 | 115.05603 |                              |
| 8/3/10  | 148.480            | 31   | Fishtrap Cr | 80   | 202             | FS 516     | 0.5          | 47.71775 | 115.05689 |                              |
| 8/6/10  | 148.480            | 31   | Fishtrap Cr | 80   | 206             | FS 516     | 0.5          | 47.71766 | 115.05696 |                              |
| 8/10/10 | 148.480            | 31   | Fishtrap Cr | 80   | 200             | FS 516     | 0.5          | 47.71775 | 115.05700 |                              |
| 8/11/10 | 148.480            | 31   | Fishtrap Cr | 80   | 203             | FS 516     | 0.5          | 47.71770 | 115.05692 |                              |
| 8/17/10 | 148.480            | 31   | Fishtrap Cr | 20   | 223             | foot       | 0.5          | 47.72103 | 115.05741 |                              |
| 8/23/10 | 148.480            | 31   | Fishtrap Cr | 80   | 203             | FS 516     | 0.5          | 47.71684 | 115.05796 |                              |
| 8/30/10 | 148.480            | 31   | Fishtrap Cr | 80   | 198             | FS 516     | 0.5          | 47.71781 | 115.05682 |                              |
| 8/31/10 | 148.480            | 31   | Fishtrap Cr | 80   | 190             | FS 516     | 0.5          | 47.71790 | 115.05675 |                              |

| Date     | Radio<br>Frequency | Code | Stream       | Gain | Signal strength | Road           | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)                           |
|----------|--------------------|------|--------------|------|-----------------|----------------|--------------|----------|-----------|--------------------------------------------------------|
| 9/7/10   | 148.480            | 31   | Fishtrap Cr  | 80   | 172             | FS 516         | 1.1          | 47.72603 | 115.05190 |                                                        |
| 9/14/10  | 148.480            | 31   | Fishtrap Cr  | 80   | 202             | FS 516         | 0.5          | 47.71856 | 115.05613 |                                                        |
| 9/20/10  | 148.480            | 31   | Fishtrap Cr  | 80   | 162             | FS 516         | 1.2          | 47.72653 | 115.05162 |                                                        |
| 9/24/10  | 148.480            | 31   | Fishtrap Cr  | 80   | 191             | FS 516         | 0.5          | 47.71776 | 115.05686 |                                                        |
| 9/28/10  | 148.480            | 31   | Thompson R   | 80   | 232             | ACM            | 10           | 47.67128 | 115.10405 |                                                        |
| 10/12/10 | 148.480            | 31   | Vermillion R | na   | na              | na             | na           | na       | na        | Avista remote 2 miles up<br>Verm                       |
| 5/6/10   | 148.480            | 32   | Clark Fork   | 90   | na              | Steamboat W    |              | 47.57461 | 115.31461 | 4-5 miles below TR, transport 5/5/10 to .6 miles up TR |
| 5/11/10  | 148.480            | 32   | Clark Fork   | na   | na              | na             | na           | na       | na        | found by Avista AT Finley<br>Flats                     |
| 6/2/10   | 148.480            | 32   | Clark Fork   | 80   | 172             | na             | na           | 47.59466 | 115.36195 | old powerhouse                                         |
| 6/3/10   | 148.480            | 32   | Clark Fork   | 60   | 160             | na             | na           | 47.59444 | 115.36251 | downstream end of wingwall<br>Old Powerhouse           |
| 6/4/10   | 148.480            | 32   | Clark Fork   | 60   | 150             | na             | na           | 47.59435 | 115.36212 | downstream end of wingwall<br>Old Powerhouse           |
| 10/8/10  | 148.480            | 32   | Clark Fork   | 80   | 62              | na             | na           | 47.59466 | 115.36194 | old powerhouse                                         |
| 5/9/11   | 148.480            | 32   | Clark Fork   | 90   | 133             | Blue Slide     | 19.7         | 47.82500 | 115.54186 | Vermillion Bay bridge                                  |
| 5/18/11  | 148.480            | 32   | Clark Fork   | 90   | 148             | HWY 200        | 47           | 47.62577 | 115.40539 | Flatiron boat launch                                   |
| 5/26/11  | 148.480            | 32   | Clark Fork   | 80   | 115             | na             | na           | 47.58463 | 115.36180 | old powerhouse                                         |
| 6/1/11   | 148.480            | 32   | Clark Fork   | 80   | 71              | Prospect Cr Rd | 0.8          | 47.59667 | 115.37305 |                                                        |

| Date    | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road                   | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)                                           |
|---------|--------------------|------|------------|------|-----------------|------------------------|--------------|----------|-----------|------------------------------------------------------------------------|
| 6/6/11  | 148.480            | 32   | Clark Fork | 80   | 142             | Blue Slide             | 19.2         | 47.82497 | 115.54188 | Vermillion R bridge                                                    |
| 7/13/11 | 148.480            | 32   | Clark Fork | na   | na              | n                      | na           | na       | na        | passed thru Noxon dam<br>6/14/11, passed through<br>Cabinet dam 7/2/11 |
| 5/26/11 | 148.500            | 35   | Clark Fork | 80   | 99              | HWY 200                | 28           | 47.85045 | 115.60793 | east side TC hwy bridge                                                |
| 6/1/11  | 148.500            | 35   | Clark Fork | 85   | 137             | HWY 200                | 28           | 47.84834 | 115.60611 | above Trout Creek hwy<br>bridge                                        |
| 6/6/11  | 148.500            | 35   | Clark Fork | 90   | 68              | HWY 200                | 28           | 47.84845 | 115.60615 | above Trout Creek hwy<br>bridge                                        |
| 6/9/11  | 148.500            | 35   | Clark Fork | 90   | 150             | Blue Slide             | 22.9         | 47.85197 | 115.58818 | across from Trout Creek<br>town                                        |
| 7/6/11  | 148.500            | 35   | Clark Fork | na   | na              | Noxon springs remote   | na           | na       | na        | passed through Noxon dam<br>6/14/11                                    |
| 6/9/11  | 148.500            | 36   | Clark Fork | 90   | 209             | Blue Slide             | 19.6         | 47.82531 | 115.54284 | Vermillion R bridge                                                    |
| 6/20/11 | 148.500            | 36   | Clark Fork | 80   | 200             | na                     | na           | 47.59465 | 115.36198 | old powerhouse                                                         |
| 6/23/11 | 148.500            | 36   | Clark Fork | 80   | 141             | na                     | na           | 47.59456 | 115.36198 | old powerhouse                                                         |
| 6/27/11 | 148.500            | 36   | Clark Fork | 90   | 125             | na                     | na           | 47.59465 | 115.36205 | old powerhouse                                                         |
| 6/30/11 | 148.500            | 36   | Clark Fork | 90   | 192             | Marten Cr<br>Rd/FS2229 | 8.9          | 47.87998 | 115.74889 | Marten Cr bridge                                                       |
| 7/5/11  | 148.500            | 36   | Clark Fork | 80   | 121             | Blue Slide             | 5.5          | 47.67488 | 115.39932 | above Graves Cr mouth                                                  |
| 7/13/11 | 148.500            | 36   | Clark Fork | 80   | 131             | na                     | na           | 47.59455 | 115.36212 | old powerhouse                                                         |
| 7/18/11 | 148.500            | 36   | Clark Fork | 85   | 146             | Blue Slide             | 6            | 47.68304 | 115.40565 | Graves Cr mouth                                                        |
| 8/1/11  | 148.500            | 36   | Clark Fork | 85   | 60              | Blue Slide             | 15.6         | 47.79532 | 115.48496 | before Kirby Cr Rd                                                     |

| Date     | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road       | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location) |
|----------|--------------------|------|------------|------|-----------------|------------|--------------|----------|-----------|------------------------------|
| 8/8/11   | 148.500            | 36   | Clark Fork | 90   | 66              | Blue Slide | 15.6         | 47.79336 | 115.48514 |                              |
| 8/15/11  | 148.500            | 36   | Clark Fork | 90   | 136             | Blue Slide | 16.6         | 47.79976 | 115.49946 |                              |
| 8/22/11  | 148.500            | 36   | Clark Fork | 90   | 127             | Blue Slide | 16.5         | 47.80021 | 115.49977 |                              |
| 8/30/11  | 148.500            | 36   | Clark Fork | 85   | 82              | Blue Slide | 16.5         | 47.80110 | 115.50048 |                              |
| 9/6/11   | 148.500            | 36   | Clark Fork | 85   | 79              | Blue Slide | 16.5         | 47.79985 | 115.49949 |                              |
| 9/9/11   | 148.500            | 36   | Clark Fork | 90   | 104             | Blue Slide | 16.5         | 47.80053 | 115.49971 |                              |
| 9/19/11  | 148.500            | 36   | Clark Fork | 90   | 152             | Blue Slide | 16.5         | 47.80012 | 115.49971 |                              |
| 9/26/11  | 148.500            | 36   | Clark Fork | 80   | 107             | Blue Slide | 16.5         | 47.80022 | 115.50019 |                              |
| 9/29/11  | 148.500            | 36   | Clark Fork | 98   | 120             | Blue Slide | 16.4         | 47.80068 | 115.50023 |                              |
| 10/7/11  | 148.500            | 36   | Clark Fork | 90   | 145             | Blue Slide | 16.5         | 47.80084 | 115.49969 |                              |
| 10/17/11 | 148.500            | 36   | Clark Fork | 80   | 136             | Blue Slide | 16.5         | 47.80083 | 115.49984 |                              |
| 10/26/11 | 148.500            | 36   | Clark Fork | 90   | 148             | Blue Slide | 16.4         | 47.79979 | 115.49936 |                              |
| 11/8/11  | 148.500            | 36   | Clark Fork | 90   | 139             | Blue Slide | 17           | 47.79940 | 115.49920 |                              |
| 11/18/11 | 148.500            | 36   | Clark Fork | 90   | 71              | Blue Slide | 16.6         | 47.80000 | 115.49942 |                              |
| 11/28/11 | 148.500            | 36   | Clark Fork | 90   | 143             | Blue Slide | 16.5         | 47.79872 | 115.49825 |                              |
| 12/5/11  | 148.500            | 36   | Clark Fork | 90   | 77              | Blue Slide | 16.5         | 47.79938 | 115.49926 |                              |

| Date     | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road                   | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)                             |
|----------|--------------------|------|------------|------|-----------------|------------------------|--------------|----------|-----------|----------------------------------------------------------|
| 12/12/11 | 148.500            | 36   | Clark Fork | 90   | 124             | Blue Slide             | 16.5         | 47.78876 | 115.49837 | same location                                            |
| 12/19/11 | 148.500            | 36   | Clark Fork | 90   | 112             | Blue Slide             | 14.8         | 47.78136 | 115.47814 | 1.7 miles below usual spot                               |
| 12/19/11 | 148.500            | 36   | Clark Fork | 90   | 88              | Blue Slide             | 16.5         | 47.79876 | 115.49837 | same location, heard for over 2 miles, tag out of water? |
| 6/15/11  | 148.500            | 37   | Clark Fork | 90   | 72              | Marten Cr<br>Rd/FS2229 | 4            | 47.85820 | 115.65731 | below train trestle                                      |
| 7/6/11   | 148.500            | 37   | Clark Fork | na   | na              | Noxon springs remote   | na           | na       | na        | passed through Noxon dam 6/20/11                         |
| 9/9/11   | 148.500            | 37   | Clark Fork | 80   | 176             | Marten Cr<br>Rd/FS2229 | 18.8         | 47.97247 | 115.74386 | below Noxon dam                                          |
| 10/26/11 | 148.500            | 37   | Clark Fork | 80   | 156             | Marten Cr<br>Rd/FS2229 | 18.5         | 47.96813 | 115.74125 | below Noxon dam across<br>from Avista field office       |
| 6/9/11   | 148.500            | 38   | Clark Fork | 90   | 175             | Blue Slide             | 16.8         | 47.80554 | 115.50564 | Pine Cove campground                                     |
| 6/15/11  | 148.500            | 38   | Clark Fork | 80   | 161             | na                     | na           | 47.59460 | 115.36200 | old powerhouse                                           |
| 6/20/11  | 148.500            | 38   | Clark Fork | 80   | 231             | na                     | na           | 47.59031 | 115.35842 | Prospect mouth                                           |
| 6/23/11  | 148.500            | 38   | Clark Fork | 80   | 155             | na                     | na           | 47.58846 | 115.25563 | Blue Cr, below PPL dam                                   |
| 6/27/11  | 148.500            | 38   | Clark Fork | 80   | 215             | na                     | na           | 47.59004 | 115.35294 | Blue Cr, below PPL dam                                   |
| 6/30/11  | 148.500            | 38   | Clark Fork | 80   | 133             | na                     | na           | 47.59005 | 115.35095 | Blue Cr, below PPL dam                                   |
| 7/5/11   | 148.500            | 38   | Clark Fork | 80   | 111             | na                     | na           | 47.58793 | 115.35507 | Blue Cr, below PPL dam                                   |
| 7/13/11  | 148.500            | 38   | Clark Fork | 80   | 147             | na                     | na           | 47.59455 | 115.36212 | old powerhouse                                           |
| 7/18/11  | 148.500            | 38   | Clark Fork | 80   | 185             | na                     | na           | 47.58949 | 115.35635 | high bridge                                              |

| Date     | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road                   | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)           |
|----------|--------------------|------|------------|------|-----------------|------------------------|--------------|----------|-----------|----------------------------------------|
| 7/21/11  | 148.500            | 38   | Clark Fork | 70   | 202             | na                     | na           | 47.59016 | 115.35844 | Prospect mouth                         |
| 10/7/11  | 148.500            | 38   | Clark Fork | 90   | 173             | Marten Cr<br>Rd/FS2229 | 9            | 47.88029 | 115.74965 |                                        |
| 11/18/11 | 148.500            | 38   | Clark Fork | 90   | 202             | Blue Slide             | 21.2         | 47.83701 | 115.57075 |                                        |
| 11/28/11 | 148.500            | 38   | Clark Fork | 90   | 109             | Blue Slide             | 21.5         | 47.84014 | 115.57564 | across from Trout Creek town           |
| 12/5/11  | 148.500            | 38   | Clark Fork | 90   | 151             | Blue Slide             | 21.5         | 47.84022 | 115.57541 | across from Trout Creek town           |
| 6/23/11  | 148.500            | 39   | Clark Fork | 85   | 232             | Blue Slide             | 17.8         | 47.81383 | 115.52431 | county boat launch above<br>Vermillion |
| 6/27/11  | 148.500            | 39   | Clark Fork | 90   | 105             | Blue Slide             | 21.6         | 47.83027 | 115.55736 | across from Trout Creek town           |
| 6/30/11  | 148.500            | 39   | Clark Fork | 80   | 102             | Blue Slide             | 20.7         | 47.82779 | 115.55743 | across from Trout Creek town           |
| 7/5/11   | 148.500            | 39   | Clark Fork | 80   | 92              | Blue Slide             | 20.8         | 47.82781 | 115.55758 | across from Trout Creek town           |
| 7/13/11  | 148.500            | 39   | Clark Fork | 80   | 88              | HWY 200                | 33           | 47.80303 | 115.54355 | Beaver Cr bay                          |
| 7/18/11  | 148.500            | 39   | Clark Fork | 80   | 152             | Blue Slide             | 19.9         | 47.82520 | 115.54369 | Vermillion bay bridge                  |
| 7/21/11  | 148.500            | 39   | Clark Fork | 80   | 104             | Blue Slide             | 19.9         | 47.82515 | 115.54230 | Vermillion bay bridge                  |
| 8/1/11   | 148.500            | 39   | Clark Fork | 80   | 121             | Blue Slide             | 19.2         | 47.82506 | 115.54195 | Vermillion bay bridge                  |
| 8/8/11   | 148.500            | 39   | Clark Fork | 80   | 168             | Blue Slide             | 19.9         | 47.82575 | 115.54365 | Vermillion bay bridge                  |
| 8/15/11  | 148.500            | 39   | Clark Fork | 80   | 187             | Blue Slide             | 20.1         | 47.82528 | 115.54269 | Vermillion bay bridge                  |
| 8/22/11  | 148.500            | 39   | Clark Fork | 80   | 122             | Blue Slide             | 19.3         | 47.82504 | 115.54186 | Vermillion bay bridge                  |

| Date    | Radio<br>Frequency | Code | Stream     | Gain | Signal strength | Road                   | Mile<br>Post | Latitude | Longitude | Notes (i.e., about location)          |
|---------|--------------------|------|------------|------|-----------------|------------------------|--------------|----------|-----------|---------------------------------------|
| 8/30/11 | 148.500            | 39   | Clark Fork | 80   | 165             | Marten Cr<br>Rd/FS2229 | 9            | 47.88008 | 115.74913 | Marten Cr bay bridge                  |
| 6/27/11 | 148.500            | 40   | Clark Fork | 80   | 178             | Blue Slide             | 1            | 47.61758 | 115.38925 | TF state park                         |
| 6/30/11 | 148.500            | 40   | Clark Fork | 80   | 230             | na                     | na           | 47.58793 | 115.35507 | Blue Cr, below PPL dam                |
| 7/5/11  | 148.500            | 40   | Clark Fork | 80   | 167             | na                     | na           | 47.58793 | 115.35507 | Blue Cr, below PPL dam                |
| 7/13/11 | 148.500            | 40   | Clark Fork | 90   | 180             | na                     | na           | 47.58956 | 115.35628 | at high bridge in tailrace            |
| 3/23/11 | 148.640            | 52   | Clark Fork | 80   | 148             | HWY 200                | 49           | 47.60471 | 115.37732 | HWY bridge at Rimrock,<br>AVISTA fish |
| 3/30/11 | 148.640            | 52   | Clark Fork | 90   | 168             | HWY 200                | 49           | 47.60475 | 115.37243 | HWY bridge at Rimrock,<br>AVISTA fish |
| 4/6/11  | 148.640            | 100  | Clark Fork | 80   | 157             | na                     | na           | 47.59469 | 115.36216 | old powerhouse AVISTA fish            |
| 4/12/11 | 148.640            | 100  | Clark Fork | 80   | 173             | na                     | na           | 47.49475 | 115.36199 | old powerhouse, AVISTA fish           |
| 4/27/11 | 148.640            | 100  | Clark Fork | 90   | 154             | HWY 200                | 49           | 47.60463 | 115.37627 | HWY bridge at Rimrock,<br>AVISTA fish |
| 5/9/11  | 148.640            | 169  | Clark Fork | 95   | 67              | Blue Slide             | 19.7         | 47.82500 | 115.54186 | Vermillion Bay bridge                 |
| 6/27/11 | 148.480            | ?    | Clark Fork | 95   | 42              | Marten Cr<br>Rd/FS2229 | 4            | 47.85823 | 115.65745 | below train trestle                   |

#### **Bull Trout Code 35 and 37 Radio Telemetry 2011 (Source: Avista Corporation)**

**Bull Trout Code: 35** 

| Dun 11out Couc. 33   |                                                                   |
|----------------------|-------------------------------------------------------------------|
| Surgery Information  |                                                                   |
| Species              | Bull trout                                                        |
| Radio frequency      | 148.500 code 35 (500-35)                                          |
| PIT tag number       | 9851210211 <b>52977</b>                                           |
| Length               | 710 millimeters                                                   |
| Weight               | 3856 grams                                                        |
| Sex                  | Female                                                            |
| Surgery date         | 5/20/11                                                           |
| Genetics information | Fishtrap Creek (R4) / East Fork Bull River (R2) / Conf. = 5.53809 |

#### 2011

- <u>5-17-11</u> Fish was captured while night electrofishing in the lower Clark Fork River downstream of Cabinet Gorge Dam in the top end of the North bank section (Clark Fork River Rkm 242). This fish was held at the Cabinet Gorge Fish Hatchery until genetics testing was completed.
- <u>5-20-11</u> Radio tagged and transported the fish upstream to Noxon Reservoir (truck water temperature = 10 °C) and released at the county boat ramp upstream from Vermilion Bay (Clark Fork River Rkm 299) (surface water temperature = 9 °C).
- <u>5-24 to 6-9-11</u> Fish located between Trout Creek boat ramp and highway 200 bridge on river left side (Clark Fork River Rkm 295). **5 detections**
- <u>6-15 (10:36) to 6-15-11 (10:44)</u> Fish was detected on remote monitoring stations located at the Noxon Rapids Dam and the Noxon Spring site (Clark Fork River Rkm 272.4 & 272.9). **8 detections**
- <u>6-24 (17:19) to 6-28 (17:35)</u> Fish detected on remote monitoring stations located at the Cabinet Gorge Dam and the Noxon Springs site (Clark Fork River Rkm 272.4 & 272.9). **1855 detections**
- <u>6-28 (18:29) to 6-29-11 (15:54)</u> Detected fish on remote monitoring stations located at the Cabinet Gorge Dam and the Noxon Springs site (Clark Fork River Rkm 272.4 & 272.9). **425 detections**
- <u>7-31-11 (06:17)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>8-6-11 (07:13)</u> Detected fish on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>8-12-11 (11:58)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>8-21-11 (00:04)</u> Detected fish on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>9-7-11 (23:28)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>9-15-11 (00:02)</u> Detected fish on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**

- <u>9-29-11 (18:10)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>10-18-11</u> Fish was located in inner Bull River Bay (Bull River Rkm 0.8). **1 detection**
- <u>10-21-11 (20:07)</u> Detected fish on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>10-21-11 (22:47)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>10-22-11 (01:41)</u> Detected fish on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>10-22-11 (03:45)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>10-22-11 (04:08)</u> Detected fish on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>10-22-11 (05:27)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>10-22-11 (07:52)</u> Detected fish on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>10-22 (08:37) to 10-22 (09:54)</u> Detected fish on remote monitoring stations located at the Cabinet Gorge Dam and the Noxon Springs site (Clark Fork River Rkm 272.4 & 272.9). **29 detections**
- <u>10-24 (10:45) to 10-24-11 (14:06)</u> Detected fish on remote monitoring stations located at Cabinet Gorge Dam (Clark Fork River Rkm 242). **80 detections**
- <u>10-24 (14:13) to 10-24 (15:47)</u> Fish detected on meathole/tunnels remote monitoring station located at the Cabinet Gorge Dam (Clark Fork River Rkm 242). **28 detections**
- <u>10-24 (17:11) to 10-24-11 (22:48)</u> Fish detected on meathole/tunnels remote monitoring station located at the Cabinet Gorge Dam (Clark Fork River Rkm 242). **57 detections**
- <u>10-25-11 (00:14)</u> Fish detected on meathole/tunnels remote monitoring station located at the Cabinet Gorge Dam (Clark Fork River Rkm 242). **2 detections**
- <u>10-25-11 (02:07)</u> Fish detected on meathole/tunnels remote monitoring station located at the Cabinet Gorge Dam (Clark Fork River Rkm 242). **2 detections**
- <u>10-25 (03:37) to 10-25-11 (04:56)</u> Detected fish on meathole/tunnels remote monitoring station located at the Cabinet Gorge Dam (Clark Fork River Rkm 242). **5 detections**
- <u>10-25 (07:30) to 10-25-11 (09:40)</u> Fish detected on meathole/tunnels remote monitoring station located at the Cabinet Gorge Dam (Clark Fork River Rkm 242). **23 detections**
- <u>10-25-11 (10:49)</u> Detected fish on meathole/tunnels remote monitoring station located at the Cabinet Gorge Dam (Clark Fork River Rkm 242). **1 detection**
- <u>10-25-11 (11:39)</u> Fish detected on meathole/tunnels remote monitoring station located at the Cabinet Gorge Dam (Clark Fork River Rkm 242). **2 detections**

- <u>10-25 (17:40) to 10-25-11 (18:19)</u> Detected fish on meathole/tunnels remote monitoring station located at the Cabinet Gorge Dam (Clark Fork River Rkm 242). 6 detections
- 10-25 (19:17) to 10-25-11 (19:33) Fish detected on meathole/tunnels remote monitoring station located at the Cabinet Gorge Dam (Clark Fork River Rkm 242). 6 detections
- <u>10-25-11 (22:38)</u> Detected fish on meathole/tunnels remote monitoring station located at the Cabinet Gorge Dam (Clark Fork River Rkm 242). 2 detections
- <u>10-26 (00:36) to 10-26-11 (00:49)</u> Fish detected on meathole/tunnels remote monitoring station located at the Cabinet Gorge Dam (Clark Fork River Rkm 242). 3 detections
- <u>10-26 (06:01) to 10-26-11 (06:20)</u> Detected fish on meathole/tunnels remote monitoring station located at the Cabinet Gorge Dam (Clark Fork River Rkm 242). 4 detections

Total Detections = 2,558

#### **Bull Trout Code 37**

| Surgery Information  |                                                       |
|----------------------|-------------------------------------------------------|
| Species              | Bull trout                                            |
| Radio frequency      | 148.500 code 37 (500-37)                              |
| PIT tag number       | 9851210211 <b>99621</b>                               |
| Length               | 530 millimeters                                       |
| Weight               | 1360 grams                                            |
| Sex                  | Female                                                |
| Surgery date         | 5/25/11                                               |
| Genetics information | Thompson River (R4) / Upper Rock Creek (R4) / Conf. = |
|                      | 48,193,900                                            |

#### 2011

- <u>5-22-11</u> Fish was captured while night electrofishing in the lower Clark Fork River downstream of Cabinet Gorge Dam in the top end of the North bank section (Clark Fork River Rkm 242). This fish was held at the Cabinet Gorge Fish Hatchery until genetics testing was completed.
- <u>5-25-11</u> Radio tagged and transported the fish upstream to Noxon Reservoir (truck water temperature = 10 °C) and released at the county boat ramp upstream from Vermilion Bay (Clark Fork River Rkm 299) (surface water temperature = 10 °C).
- <u>6-15-11</u> Located fish in Noxon Reservoir below railroad trestle downstream from the North Shore boat ramp (Clark Fork River Rkm 286). **1 detection**
- <u>6-21 (16:20) to 6-21-11 (17:17)</u> Fish detected on remote monitoring stations located at the Noxon Rapids Dam and the Noxon Springs site (Clark Fork River Rkm 272.4 & 272.9). **11 detections**
- <u>6-21 (18:57) to 6-21-11 (20:34)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **4 detections**
- <u>7-2-11 (20:15)</u> Fish detected on remote monitoring stations located at the Noxon Rapids Dam (Clark Fork River Rkm 272.9). **1 detection**
- <u>7-14 to 7-18-11</u> Located fish above the Noxon bridge out from the mouth of Pilgrim Creek (Clark Fork River Rkm 268.4). **2 detections**
- <u>7-19 (19:31) to 7-20-11 (04:21)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **43 detections**
- <u>7-20 (06:18) to 7-20-11 (06:26)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **2 detections**
- <u>7-20-11 (07:25)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- 7-20-11 Detected fish around the mouth of Rock Creek (Clark Fork River Rkm 271). 1 detection
- <u>7-20 (11:47) to 7-20-11 (22:59)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **44 detections**

- <u>7-21 (00:24) to 7-22-11 (03:56)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **168 detections**
- <u>7-22 (07:19) to 7-24-11 (09:09)</u> Fish detected on remote monitoring stations located at the Noxon Rapids Dam and the Noxon Springs site (Clark Fork River Rkm 272.4 & 272.9). **838 detections**
- <u>7-24 (11:56) to 7-24-11 (12:04)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **2 detections**
- <u>7-24 (17:29) to 7-24-11 (18:49)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **4 detections**
- <u>7-24 (20:10) to 7-24-11 (23:58)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **13 detections**
- 7-28 to 7-29-11 Fish located in Elk Creek Bay (Clark Fork River Rkm 252.2). 2 detections
- <u>8-10-11 (13:52)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>8-4 to 8-19-11</u> Fish detected in inner Bull River Bay (Bull River Rkm 0.8). **2 detections**
- 8-22 (13:11) to 8-22-11 (16:04) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 18 detections
- <u>8-22-11 (17:44)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>8-22 (20:43) to 8-23-11 (12:19)</u> Fish detected on remote monitoring stations located at the Noxon Rapids Dam and the Noxon Springs site (Clark Fork River Rkm 272.4 & 272.9). **240 detections**
- <u>8-23 (13:40) to 8-23-11 (14:42)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **5 detections**
- <u>8-23 (16:21) to 8-23-11 (16:31)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **2 detections**
- <u>8-23 (21:29) to 8-24-11 (12:35)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **79 detections**
- <u>8-24 (18:24) to 8-24-11 (19:11)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). <u>3 detections</u>
- <u>8-24 (20:08) to 8-24-11 (23:30)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **9 detections**
- <u>8-25 (01:47) to 8-25-11 (13:01)</u> Fish detected on remote monitoring stations located at the Noxon Rapids Dam and the Noxon Springs site (Clark Fork River Rkm 272.4 & 272.9). **99 detections**
- <u>8-25 (23:09) to 8-26-11 (00:37)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **7 detections**
- <u>8-26-11 (01:40)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>8-26 (02:17) to 8-26-11 (03:38)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **4 detections**
- <u>8-26 (05:01) to 8-26-11 (11:08)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **73 detections**
- <u>8-26-11 (23:40)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>8-25 to 8-26-11</u> Located fish between Noxon Springs and the mouth of Rock Creek (Clark Fork River Rkm 271.6) **2 detections**

- <u>8-27 (03:35) to 8-28-11 (18:56)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). <u>300 detections</u>
- <u>8-28 (23:30) to 8-29-11 (06:11)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **59 detections**
- <u>8-29 (08:32) to 8-29-11 (08:51)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **5 detections**
- <u>8-29 (10:16) to 8-29-11 (11:16)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **6 detections**
- <u>8-29 (12:16) to 8-29-11 (15:00)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **16 detections**
- 8-29 (18:19) to 8-29-11 (18:26) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 2 detections
- <u>8-30 (00:45) to 8-30-11 (01:07)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **6 detections**
- <u>8-30 (02:24) to 8-30-11 (02:43)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **4 detections**
- <u>8-30 (07:02) to 8-31-11 (03:08)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 147 detections
- 8-31 (05:56) to 8-31-11 (07:48) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 9 detections
- 8-31 (09:40) to 8-31-11 (22:58) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 159 detections
- <u>9-1-11 (01:21)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- 9-1 (02:55) to 9-1-11 (09:05) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 69 detections
- 9-1 (10:09) to 9-1-11 (14:04) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 33 detections
- <u>9-1 (15:01) to 9-1-11 (17:34)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **10 detections**
- <u>9-1 (19:37) to 9-3-11 (05:08)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 310 detections
- 9-3 (07:08) to 9-3-11 (07:51) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 3 detections
- <u>9-3 (09:07) to 9-3-11 (09:13)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- 9-3 (10:18) to 9-3-11 (10:24) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 1 detection
- 9-3 (12:02) to 9-3-11 (16:06) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4).
   21 detections
- <u>9-3 (19:03) to 9-4-11 (06:14)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **92 detections**
- <u>9-4 (08:17) to 9-4-11 (08:45)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **4 detections**

- 9-4 (10:11) to 9-4-11 (10:57) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 11 detections
- 9-4 (12:21) to 9-4-11 (12:34) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 2 detections
- 9-4 (15:23) to 9-4-11 (15:31) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 2 detections
- 9-4-11 (17:03) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 1 detection
- 9-4 (18:53) to 9-5-11 (05:35) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 84 detections
- 9-5 (09:52) to 9-5-11 (12:27) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 21 detections
- 9-5 (14:54) to 9-5-11 (15:55) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 6 detections
- 9-6 (00:22) to 9-6-11 (02:36) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 7 detections
- 9-6 (06:28) to 9-6-11 (09:37) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 11 detections
- 9-6 (19:20) to 9-7-11 (03:11) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 72 detections
- 9-7-11 (04:52) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 1 detection
- 9-7 (11:00) to 9-7-11 (15:55) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 46 detections
- 9-7 (19:58) to 9-8-11 (01:40) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 31 detections
- 9-8 (03:01) to 9-8-11 (03:34) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 4 detections
- 9-8 (05:52) to 9-8-11 (06:10) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 4 detections
- 9-8 (07:18) to 9-8-11 (09:54) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 27 detections
- 9-8 (11:08) to 9-8-11 (11:26) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 3 detections
- 9-8-11 (15:38) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 1 detection
- 9-8 (23:23) to 9-9-11 (01:22) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 5 detections
- 9-9 (03:28) to 9-9-11 (12:11) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 81 detections
- 9-9 (13:41) to 9-9-11 (15:21) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 14 detections
- 9-9 (20:08) to 9-10-11 (02:39) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 43 detections

- 9-10 (06:50) to 9-10-11 (10:51) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4).
   42 detections
- <u>9-10-11 (14:18)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1 detection**
- <u>9-10 (19:26) to 9-10-11 (21:58)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 13 detections
- <u>9-11 (00:09) to 9-11-11 (00:30)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **4 detections**
- <u>9-11 (02:02) to 9-11-11 (15:40)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **159 detections**
- 9-11 (19:34) to 9-11-11 (19:50) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 2 detections
- <u>9-11 (23:11) to 9-12-11 (00:25)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **2 detections**
- <u>9-12 (02:00) to 9-12-11 (15:11)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **166 detections**
- <u>9-12 (20:56) to 9-13-11 (01:13)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 31 detections
- <u>9-13 (02:31) to 9-13-11 (02:47)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 3 **detections**
- <u>9-13 (06:58) to 9-14-11 (00:25)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **132 detections**
- <u>9-14 (01:54) to 9-14-11 (03:04)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **7 detections**
- 9-14 (04:05) to 9-14-11 (10:48) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 80 detections
- <u>9-14 (23:28) to 9-15-11 (04:36)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **40 detections**
- <u>9-15 (06:46) to 9-15-11 (16:48)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **103 detections**
- <u>9-15 (18:09) to 9-15-11 (18:25)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 3 detections
- <u>9-15 (19:31) to 9-17-11 (02:53)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **284 detections**
- <u>9-17 (04:20) to 9-17-11 (11:10)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **78 detections**
- <u>9-17 (12:31) to 9-17-11 (16:53)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). <u>35 detections</u>
- <u>9-17 (18:36) to 9-23-11 (16:22)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1554 detections**
- <u>9-23 (21:02) to 9-24-11 (04:25)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **51 detections**
- 9-24 (06:22) to 9-24-11 (16:03) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). 117 detections

- <u>9-24 (19:01) to 9-25-11 (04:49)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **101 detections**
- 9-25 (05:45) to 9-30-11 (17:15) Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4).
   1379 detections
- <u>9-30 (18:10 ) to 10-7-11 (04:19)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **1664 detections**
- <u>10-7 (05:28) to 10-7-11 (21:52)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **179 detections**
- <u>10-7 (22:51) to 10-8-11 (05:20)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **63 detections**
- <u>10-8 (06:30) to 10-9-11 (16:40)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **357 detections**
- <u>10-9 (17:42) to 10-20-11 (04:49)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **2878 detections**
- <u>10-20 (06:12) to 11-10-11 (10:58)</u> Fish detected on remote monitoring station located at the Noxon Springs site (Clark Fork River Rkm 272.4). **5909 detections**
- <u>8-29 to 12-6-11</u> Fish located around the mouth of Rock Creek (Clark Fork River Rkm 271). **7 detections**

Total Detections = 18,755

# Appendix C – 2010 West Fork Thompson River Data

#### 2010 West Fork Thompson River Electrofishing Site 0, .3 Mile

Sampling Date 7/21/2010 Duration (sec) 3412

Water Temp. 8.9°C

Data Source: FWP Latitude N.47.64524 Longitude W.115.17950

Table C-1. Data collection during 2010 electrofishing in the West Fork Thompson River Site 0, .3 Mile.

| Record<br>No. | Species<br>Abbr | Length<br>(mm) | Weight<br>(g) | PIT Tag No.     | Comments                          |
|---------------|-----------------|----------------|---------------|-----------------|-----------------------------------|
| 1             | BULL            | 182            | 44            | 985121021916148 | Genetic Vial# 001-A1              |
| 2             | BULL            | 243            | 114           | 985121021865702 | Genetic Vial# 001-A2              |
| 3             | WCT             | 78             | 5             |                 |                                   |
| 4             | WCT             | 312            | 270           |                 |                                   |
| 5             | WCT             | 209            | 91            |                 |                                   |
| 6             | RB              | 160            | 42            |                 |                                   |
| 7             | RB              | 142            | 25            |                 |                                   |
| 8             | WCT             | 170            | 43            |                 |                                   |
| 9             | WCT             | 142            | 26            |                 |                                   |
| 10            | RB              | 104            | 10            |                 |                                   |
| 11            | RB              | 93             | 7             |                 |                                   |
| 12            | RB              | 84             | 7             |                 |                                   |
| 13            | RB              | 180            | 56            |                 |                                   |
| 14            | WCT             | 172            | 46            |                 |                                   |
| 15            | WCT             | 139            | 23            |                 |                                   |
| 16            | RB              | 85             | 6             |                 |                                   |
| 17            | RB              | 121            | 15            |                 |                                   |
| 18            | RB              | 86             | 6             |                 |                                   |
| 19            | RB              | 99             | 9             |                 |                                   |
| 20            | WCT             | 79             | 4             |                 |                                   |
| 21            | WCT             | 239            | 133           |                 | 2 <sup>nd</sup> Run, 1055 seconds |

Table C-2. Population Estimate Data collection during 2010 electrofishing in the West Fork Thompson River Site 0...3 Mile.

| Pass                   | BULL | WCT   | RB    | All   |
|------------------------|------|-------|-------|-------|
| 1                      | 2    | 8     | 10    | 20    |
| 2                      | 0    | 1     | 0     | 1     |
| Population<br>Estimate | 2    | 10    | 10    | 22    |
| 95% conf. Interval     | 2-2  | 9-13  | 10-10 | 21-25 |
| S.E.                   | 0    | 1.451 | 0     | 1.143 |
| p-bar                  |      | 0.875 | 4     | 0.95  |

#### 2010 West Fork Thompson River Electrofishing Site 1, Lower 1.2 Mile

Sampling Date 7/26/2010

Water Temp. 9°C

Data Source: FWP Latitude N.47.66081 Longitude W.115.19319

Table C-3. Data collection during 2010 electrofishing in the West Fork Thompson River Site 1, Lower 1.2 Mile.

| Record<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No.     | Run# | Duration (seconds) |
|---------------|-----------------|----------------|------------|-----------------|------|--------------------|
| 1             | WCT             | 147            | 32         |                 | 2    | 1832               |
| 2             | WCT             | 109            | 14         |                 | 2    | 1832               |
| 3             | WCT             | 183            | 60         |                 | 2    | 1832               |
| 4             | WCT             | 92             | 8          |                 | 2    | 1832               |
| 5             | WCT             | 170            | 50         |                 | 2    | 1832               |
| 6             | WCT             | 150            | 32         |                 | 2    | 1832               |
| 7             | WCT             | 131            | 18         |                 | 2    | 1832               |
| 8             | WCT             | 72             | 4          |                 | 2    | 1832               |
| 9             | BULL            | 166            | 39         | 985121011606898 | 2    | 1832               |
| 10            | BULL            | 108            | 9          | 985121012767557 | 2    | 1832               |
| 11            | WCT             | 121            | 18         |                 | 1    | 3393               |
| 12            | WCT             | 114            | 17         |                 | 1    | 3393               |
| 13            | WCT             | 172            | 52         |                 | 1    | 3393               |
| 14            | WCT             | 155            | 33         |                 | 1    | 3393               |
| 15            | RB<br>WCT       | 106            | 15         |                 | 1    | 3393               |
| 16            | WCT             | 209            | 91         |                 | 1    | 3393               |
| 17<br>18      | WCT             | 100<br>75      | 10<br>4    |                 | 1    | 3393<br>3393       |
| 19            | WCT             | 101            | 11         |                 | 1    | 3393               |
| 20            | WCT             | 92             | 7          |                 | 1    | 3393               |
| 21            | WCT             | 75             | 3          |                 | 1    | 3393               |
| 22            | WCT             | 60             | 1          |                 | 1    | 3393               |
| 23            | BULL            | 111            | 13         | 985121012724928 | 1    | 3393               |
| 24            | WCT             | 122            | 16         | 903121012124920 | 1    | 3393               |
| 25            | WCT             | 166            | 26         |                 | 1    | 3393               |
| 26            | WCT             | 96             | 8          |                 | 1    | 3393               |
| 27            | WCT             | 77             | 4          |                 | 1    | 3393               |
| 28            | WCT             | 136            | 23         |                 | 1    | 3393               |
| 29            | WCT             | 150            | 33         |                 | 1    | 3393               |
| 30            | WCT             | 88             | 7          |                 | 1    | 3393               |
| 31            | WCT             | 166            | 44         |                 | 1    | 3393               |
| 32            | WCT             | 79             | 5          |                 | 1    | 3393               |
| 33            | BULL            | 100            | 8          | 985121011609376 | 1    | 3393               |
| 34            | BULL            | 109            | 11         | 985121012757098 | 1    | 3393               |
| 35            | BULL            | 178            | 49         | 985121012723322 | 1    | 3393               |
| 36            | BULL            | 252            | 142        | 985121012728271 | 1    | 3393               |
| 37            | WCT             | 135            | 24         |                 | 1    | 3393               |

| Record<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No.     | Run# | Duration (seconds) |
|---------------|-----------------|----------------|------------|-----------------|------|--------------------|
| 38            | WCT             | 87             | 7          |                 | 1    | 3393               |
| 39            | RBxWCT          | 87             | 7          |                 | 1    | 3393               |
| 40            | WCT             | 134            | 24         |                 | 1    | 3393               |
| 41            | WCT             | 166            | 47         |                 | 1    | 3393               |
| 42            | WCT             | 126            | 19         |                 | 1    | 3393               |
| 43            | RBxWCT          | 108            | 12         |                 | 1    | 3393               |
| 44            | WCT             | 229            | 118        |                 | 1    | 3393               |
| 45            | WCT             | 223            | 111        |                 | 1    | 3393               |
| 46            | WCT             | 96             | 9          |                 | 1    | 3393               |
| 47            | RBxWCT          | 252            | 169        |                 | 1    | 3393               |
| 48            | WCT             | 140            | 27         |                 | 1    | 3393               |
| 49            | WCT             | 75             | 4          |                 | 1    | 3393               |
| 50            | WCT             | 73             | 3          |                 | 1    | 3393               |
| 51            | WCT             | 62             | 2          |                 | 1    | 3393               |
| 52            | WCT             | 79             | 4          | 985121012758055 | 1    | 3393               |
| 53            | BULL            | 227            | 106        |                 | 1    | 3393               |
| 54            | WCT             | 187            | 73         |                 | 3    | 3393               |
| 55            | WCT             | 75             | 4          |                 | 3    | 1287               |
| 56            | WCT             | 71             | 3          |                 | 3    | 1287               |
| 57            | WCT             | 67             | 2          |                 | 3    | 1287               |
| 58            | WCT             | 245            | 141        |                 | 3    | 1287               |

Table C-4. Population Estimate Data collection during 2010 electrofishing in the West Fork Thompson River Site 1, Lower 1.2 Mile.

| Pass                   | BULL | WCT   | RB  | RBxWCT |
|------------------------|------|-------|-----|--------|
| 1                      | 6    | 30    | 1   | 3      |
| 2                      | 2    | 7     | 0   | 0      |
| 3                      | 0    | 3     | 0   | 0      |
| Population<br>Estimate | 8    | 40    | 1   | 3      |
| 95% C.I.               | 8-8  | 40-46 | 1-1 | 3-3    |
| S.E.                   | 0.29 | 0.956 | 0   | 0      |
| p-bar                  | 0.8  | 0.752 | 1   | 1      |

# 2010 West Fork Thompson River Electrofishing Site 2, Upper 4.3 Mile

Sampling Date 7/27/2010

Water Temp. 8.5°C

Data Source: FWP Latitude N.47.70292 Longitude W.115.20674

Table C-5. Data collection during 2010 electrofishing in the West Fork Thompson River Site 2, Upper 4.3 Mile.

| Record<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No.     | Run<br>No. | Duration (seconds) | Genetic<br>Vial # | Comment<br>s |
|---------------|-----------------|----------------|------------|-----------------|------------|--------------------|-------------------|--------------|
| 1             | WCT             | 192            | 74         |                 | 2          | 2620               |                   |              |
| 2             | WCT             | 181            | 66         |                 | 2          | 2620               |                   |              |
| 3             | WCT             | 186            | 75         |                 | 2          | 2620               |                   |              |
| 4             | WCT             | 160            | 44         |                 | 2          | 2620               |                   |              |
| 5             | WCT             | 181            | 62         |                 | 2          | 2620               |                   |              |
| 6             | BULL            | 236            | 107        | 985121012723685 | 2          | 2620               | 1325-038          | Recap.       |
| 7             | BULL            | 161            | 33         | 985121012732282 | 2          | 2620               | 1325-039          |              |
| 8             | BULL            | 169            | 40         | 985121012646347 | 2          | 2620               | 1325-040          | Recap.       |
| 9             | BULL            | 123            | 14         | 985121011608307 | 2          | 2620               | 1325-041          |              |
| 10            | BULL            | 124            | 16         | 985121011604850 | 2          | 2620               | 1325-042          |              |
| 11            | BULL            | 150            | 26         | 985121011605446 | 2          | 2620               | 1325-043          |              |
| 12            | BULL            | 152            | 30         | 985121012732007 | 2          | 2620               | 1325-044          |              |
| 13            | WCT             | 112            | 14         |                 | 1          | 5719               |                   |              |
| 14            | WCT             | 101            | 9          |                 | 1          | 5719               |                   |              |
| 15            | WCT             | 98             | 10         |                 | 1          | 5719               |                   |              |
| 16            | WCT             | 135            | 23         |                 | 1          | 5719               |                   |              |
| 17            | WCT             | 252            | 167        |                 | 1          | 5719               |                   |              |
| 18            | WCT             | 169            | 48         |                 | 1          | 5719               |                   |              |
| 19            | WCT             | 242            | 123        |                 | 1          | 5719               |                   |              |
| 20            | WCT             | 194            | 77         |                 | 1          | 5719               |                   |              |
| 21            | BULL            | 182            | 49         | 985121012613682 | 1          | 5719               | 1325-045          |              |
| 22            | BULL            | 202            | 70         | 985121011605558 | 1          | 5719               | 1325-046          |              |
| 23            | BULL            | 188            | 58         | 985121012761997 | 1          | 5719               | 1325-047          |              |
| 24            | BULL            | 156            | 30         | 985121012613953 | 1          | 5719               | 1325-048          |              |
| 25            | BULL            | 162            | 33         | 985121012612192 | 1          | 5719               | 1325-049          |              |
| 26            | BULL            | 287            | 193        | 985121012742276 | 1          | 5719               | 1325-050          |              |
| 27            | BULL            | 127            | 14         | No Pit Tag      | 1          | 5719               | 1325-051          |              |
| 28            | RBxWCT          | 180            | 52         |                 | 1          | 5719               |                   |              |
| 29            | WCT             | 160            | 102        |                 | 1          | 5719               |                   |              |
| 30            | WCT             | 135            | 23         |                 | 1          | 5719               |                   |              |
| 31            | RBxWCT          | 179            | 54         |                 | 1          | 5719               |                   |              |
| 32            | WCT             | 160            | 44         |                 | 1          | 5719               |                   |              |
| 33            | BULL            | 211            | 81         | 985121012724322 | 1          | 5719               | 1325-052          |              |
| 34            | BULL            | 202            | 66         | 985121012733645 | 1          | 5719               | 1325-053          |              |
| 35            | BULL            | 116            | 13         | 985121012723452 | 1          | 5719               | 1325-054          |              |
| 36            | BULL            | 217            | 102        | 985121011604319 | 1          | 5719               | 1325-055          |              |
| 37            | BULL            | 122            | 15         | 985121012733470 | 1          | 5719               | 1325-056          |              |

| Record<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No.     | Run<br>No. | Duration (seconds) | Genetic<br>Vial # | Comment<br>s |
|---------------|-----------------|----------------|------------|-----------------|------------|--------------------|-------------------|--------------|
| 38            | BULL            | 189            | 60         | 985121011605232 | 1          | 5719               | 1325-057          | Recap.       |
| 39            | BULL            | 111            | 13         | 985121011608723 | 1          | 5719               | 1325-058          |              |
| 40            | BULL            | 119            | 13         | 985121011605906 | 1          | 5719               | 1325-059          |              |
| 41            | BULL            | 170            | 41         | 985121012614347 | 1          | 5719               | 1325-060          |              |
| 42            | BULL            | 122            | 15         | 985121012733938 | 1          | 5719               | 1325-061          |              |
| 43            | BULL            | 112            | 12         | 985121012642319 | 1          | 5719               | 1325-062          |              |
| 44            | BULL            | 230            | 101        | 985121012732240 | 1          | 5719               | 1325-063          |              |
| 45            | BULL            | 82             | 4          | 985121012613981 | 1          | 5719               | 1325-064          |              |
| 46            | BULL            | 79             | 3          | 985121012742372 | 1          | 5719               | 1325-065          |              |
| 47            | BULL            | 122            | 16         | 985121012759258 | 1          | 5719               | 1325-066          |              |
| 48            | BULL            | 113            | 12         | 985121012614325 | 1          | 5719               | 1325-067          |              |
| 49            | BULL            | 181            | 47         | 985121012731665 | 1          | 5719               | 1325-068          |              |
| 50            | BULL            | 190            | 53         | 985121012621145 | 1          | 5719               | 1325-069          |              |
| 51            | BULL            | 121            | 15         | 985121012613745 | 1          | 5719               | 1325-070          |              |
| 52            | BULL            | 145            | 24         | 985121011605801 | 1          | 5719               | 1325-071          |              |
| 53            | BULL            | 128            | 18         | 985121012728702 | 1          | 5719               | 1325-072          |              |
| 54            | BULL            | 130            | 17         | 985121011607315 | 1          | 5719               | 1325-073          |              |
| 55            | BULL            | 93             | 7          | 985121012758730 | 1          | 5719               | 1325-074          |              |
| 56            | BULL            | 148            | 25         | 985121011606923 | 1          | 5719               | 1325-075          |              |
| 57            | BULL            | 151            | 28         | 985121012721590 | 1          | 5719               | 1325-076          |              |
| 58            | BULL            | 127            | 16         | 985121011608851 | 1          | 5719               | 1325-077          |              |
| 59            | WCT             | 161            | 44         |                 | 3          | 2490               |                   |              |
| 60            | BULL            | 130            | 18         | 985121012758495 | 3          | 2490               | 1325-078          |              |
| 61            | BULL            | 88             | 5          | 985121012731625 | 3          | 2490               | 1325-079          |              |
| 62            | BULL            | 86             | 5          | 985121012757042 | 3          | 2490               | 1325-080          |              |
| 63            | BULL            | 222            | 86         | 985121012760251 | 3          | 2490               | 1325-081          |              |

Table C-6. Population Estimate Data collection during 2010 electrofishing in the West Fork Thompson River Site 2, Upper 4.3 Mile.

| Pass                   | BULL    | WCT     | RBxWCT |
|------------------------|---------|---------|--------|
| 1                      | 33      | 11      | 2      |
| 2                      | 7       | 5       | 0      |
| 3                      | 4       | 1       | 0      |
| Population<br>Estimate | 44      | 17      | 2      |
| 95% C.I.               | 44 - 51 | 17 - 17 | 2-2    |
| S.E.                   | 1.141   | 0.852   | 0      |
| p-bar                  | 0.735   | 0.708   | 1      |

# 2010 West Fork Thompson River Electrofishing Site 1A, 1.9 Mile

Sampling Date 7/27/2010 Water Temp. 10.2°C

Data Source: FWP Latitude N.47.67132 Longitude W.115.18939

Table C-7. Data collection during 2010 electrofishing in the West Fork Thompson River Site 1A, 1.9 Mile.

| Record<br>No. | Species    | Length    | Weight  | PIT Tag No.     | Run<br>No. | Duration     | Genetic |
|---------------|------------|-----------|---------|-----------------|------------|--------------|---------|
|               | Abbr       | (mm)      | (g)     |                 |            | (seconds)    | Vial #  |
| 1             | WCT        | 111       | 13      |                 | 3          | 1786         |         |
| 2             | WCT        | 93        | 7       |                 | 3          | 1786         |         |
| 3             | WCT        | 83        | 5       |                 | 3          | 1786         |         |
| <u>4</u><br>5 | WCT<br>WCT | 137       | 23      |                 | 2          | 2585         |         |
| 6             | WCT        | 122<br>97 | 17<br>9 |                 | 2          | 2585<br>2585 |         |
| 7             | WCT        | 116       | 14      |                 | 2          | 2585         |         |
| 8             | WCT        | 76        | 4       |                 | 2          | 2585         |         |
| 9             | WCT        | 124       | 17      |                 | 2          | 2585         |         |
| 10            | WCT        | 66        | 2       |                 | 2          | 2585         |         |
| 11            | WCT        | 147       | 32      |                 | 2          | 2585         |         |
| 12            | WCT        | 156       | 34      |                 | 2          | 2585         |         |
| 13            | WCT        | 81        | 5       |                 | 2          | 2585         |         |
| 14            | WCT        | 78        | 4       |                 | 2          | 2585         |         |
| 15            | BULL       | 226       | 91      | 985121021922268 | 2          | 2585         | 001-A3  |
| 16            | BULL       | 197       | 59      | 985121021872257 | 2          | 2585         | 001-A4  |
| 17            | BULL       | 111       | 10      | 985121021899865 | 2          | 2585         | 001-A5  |
| 18            | WCT        | 223       | 99      |                 | 1          | 3658         |         |
| 19            | WCT        | 222       | 111     |                 | 1          | 3658         |         |
| 20            | WCT        | 192       | 65      |                 | 1          | 3658         |         |
| 21            | WCT        | 195       | 64      |                 | 1          | 3658         |         |
| 22            | WCT        | 172       | 48      |                 | 1          | 3658         |         |
| 23            | WCT        | 191       | 66      |                 | 1          | 3658         |         |
| 24            | WCT        | 184       | 58      |                 | 1          | 3658         |         |
| 25            | WCT        | 151       | 32      |                 | 1          | 3658         |         |
| 26            | WCT        | 180       | 57      |                 | 1          | 3658         |         |
| 27            | WCT        | 195       | 66      |                 | 1          | 3658         |         |
| 28            | WCT        | 167       | 44      |                 | 1          | 3658         |         |
| 29            | WCT        | 204       | 76      |                 | 1          | 3658         |         |
| 30            | WCT        | 168       | 43      |                 | 1          | 3658         |         |
| 31            | WCT        | 124       | 19      |                 | 1          | 3658         |         |
| 32            | WCT        | 197       | 66      |                 | 1          | 3658         |         |
| 33            | WCT        | 159       | 38      |                 | 1          | 3658         |         |
| 34            | WCT        | 116       | 14      |                 | 1          | 3658         |         |
| 35            | WCT        | 115       | 14      |                 | 1          | 3658         |         |
| 36            | WCT        | 88        | 6       |                 | 1          | 3658         |         |
| 37            | WCT        | 122       | 17      |                 | 1          | 3658         |         |

| Record<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No.     | Run<br>No. | Duration (seconds) | Genetic<br>Vial # |
|---------------|-----------------|----------------|------------|-----------------|------------|--------------------|-------------------|
| 38            | WCT             | 123            | 16         |                 | 1          | 3658               |                   |
| 39            | BULL            | 251            | 148        | 985121021918242 | 1          | 3658               | 001-B1            |
| 40            | BULL            | 126            | 19         | 985121021882111 | 1          | 3658               | 001-B2            |
| 41            | BULL            | 198            | 60         | 985121021909920 | 1          | 3658               | 001-B3            |
| 42            | WCT             | 251            | 165        |                 | 1          | 3658               |                   |
| 43            | WCT             | 230            | 113        |                 | 1          | 3658               |                   |
| 44            | WCT             | 190            | 65         |                 | 1          | 3658               |                   |
| 45            | WCT             | 222            | 96         |                 | 1          | 3658               |                   |
| 46            | WCT             | 231            | 115        |                 | 1          | 3658               |                   |
| 47            | WCT             | 156            | 35         |                 | 1          | 3658               |                   |
| 48            | WCT             | 139            | 25         |                 | 1          | 3658               |                   |
| 49            | WCT             | 76             | 4          |                 | 1          | 3658               |                   |
| 50            | WCT             | 152            | 36         |                 | 1          | 3658               |                   |
| 51            | WCT             | 111            | 13         |                 | 1          | 3658               |                   |
| 52            | WCT             | 100            | 9          |                 | 1          | 3658               |                   |
| 53            | WCT             | 113            | 14         |                 | 1          | 3658               |                   |
| 54            | WCT             | 86             | 6          |                 | 1          | 3658               |                   |
| 55            | WCT             | 102            | 11         |                 | 1          | 3658               |                   |
| 56            | WCT             | 69             | 3          |                 | 1          | 3658               |                   |
| 57            | WCT             | 82             | 5          |                 | 1          | 3658               |                   |
| 58            | WCT             | 94             | 7          |                 | 1          | 3658               |                   |
| 59            | WCT             | 97             | 9          |                 | 1          | 3658               |                   |
| 60            | WCT             | 85             | 5          |                 | 1          | 3658               |                   |
| 61            | WCT             | 93             | 7          |                 | 1          | 3658               |                   |
| 62            | WCT             | 72             | 3          |                 | 1          | 3658               |                   |
| 63            | WCT             | 76             | 4          |                 | 1          | 3658               |                   |
| 64            | WCT             | 73             | 3          |                 | 1          | 3658               |                   |
| 65            | BULL            | 243            | 121        | 985121021918312 | 1          | 3658               | 001-B4            |
| 66            | BULL            | 171            | 37         | 985121021914086 | 1          | 3658               | 001-B5            |
| 67            | BULL            | 112            | 12         | 985121021922458 | 1          | 3658               | 001-C1            |
| 68            | BULL            | 117            | 13         | 985121021922402 | 1          | 3658               | 001-C2            |
| 69            | BULL            | 115            | 12         | 985121021918419 | 1          | 3658               | 001-C3            |

Table C-8. Population Estimate Data collection during 2010 electrofishing in the West Fork Thompson River Site 1A, 1.9 Mile.

| Pass                | BULL     | WCT   |
|---------------------|----------|-------|
| 1                   | 8        | 41    |
| 2                   | 3        | 10    |
| 3                   | 0        | 3     |
| Popluation Estimate | 11       | 54    |
| 95% C.I.            | 11 to 11 | 45-60 |
| S.E.                | 0.384    | 0.993 |
| p-bar               | 0.786    | 0.767 |

# 2010 West Fork Thompson River Electrofishing Site 1B, 3 Mile

Sampling Date 7/28/2010

Water Temp. 9°C

Data Source: FWP Latitude N.47.68422 Longitude W.115.19704

Table C-9. Data collection during 2010 electrofishing in the West Fork Thompson River Site 1B, 3 Mile.

| Record<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No.     | Run<br>No. | Duration (seconds) | Genetic<br>Vial # |
|---------------|-----------------|----------------|------------|-----------------|------------|--------------------|-------------------|
| 1             | WCT             | 59             | 1          |                 | 2          | 2070               |                   |
| 2             | WCT             | 75             | 3          |                 | 2          | 2070               |                   |
| 3             | WCT             | 230            | 110        |                 | 2          | 2070               |                   |
| 4             | WCT             | 78             | 4          |                 | 2          | 2070               |                   |
| 5             | WCT             | 70             | 3          |                 | 2          | 2070               |                   |
| 6             | WCT             | 61             | 1          |                 | 2          | 2070               |                   |
| 7             | WCT             | 172            | 50         |                 | 2          | 2070               |                   |
| 8             | WCT             | 125            | 18         |                 | 2          | 2070               |                   |
| 9             | WCT             | 238            | 136        |                 | 2          | 2070               |                   |
| 10            | WCT             | 65             | 2          |                 | 2          | 2070               |                   |
| 11            | WCT             | 200            | 71         |                 | 2          | 2070               |                   |
| 12            | WCT             | 141            | 29         |                 | 2          | 2070               |                   |
| 13            | WCT             | 227            | 115        |                 | 2          | 2070               |                   |
| 14            | WCT             | 75             | 4          |                 | 2          | 2070               |                   |
| 15            | WCT             | 61             | 1          |                 | 2          | 2070               |                   |
| 16            | BULL            | 187            | 48         | 985121012624406 | 2          | 2070               | 1325-082          |
| 17            | BULL            | 130            | 18         | 985121012764084 | 2          | 2070               | 1325-083          |
| 18            | BULL            | 107            | 10         | 985121011605437 | 2          | 2070               | 1325-084          |
| 19            | BULL            | 95             | 7          | 985121012614445 | 2          | 2070               | 1325-085          |
| 20            | BULL            | 98             | 7          | 985121011609476 | 2          | 2070               | 1325-086          |
| 21            | BULL            | 102            | 9          | 985121012642168 | 2          | 2070               | 1325-087          |
| 22            | WCT             | 147            | 30         |                 | 1          | 3164               |                   |
| 23            | WCT             | 128            | 18         |                 | 1          | 3164               |                   |
| 24            | WCT             | 121            | 18         |                 | 1          | 3164               |                   |
| 25            | WCT             | 70             | 3          |                 | 1          | 3164               |                   |
| 26            | WCT             | 82             | 5          |                 | 1          | 3164               |                   |
| 27            | WCT             | 124            | 18         |                 | 1          | 3164               |                   |
| 28            | WCT             | 164            | 43         |                 | 1          | 3164               |                   |
| 29            | WCT             | 193            | 73         |                 | 1          | 3164               |                   |
| 30            | WCT             | 124            | 14         |                 | 1          | 3164               |                   |
| 31            | BULL            | 191            | 64         | 985121012742487 | 1          | 3164               | 1325-088          |
| 32            | BULL            | 132            | 18         | 985121012732050 | 1          | 3164               | 1325-089          |
| 33            | BULL            | 142            | 24         | 985121011609259 | 1          | 3164               | 1325-090          |
| 34            | BULL            | 100            | 8          | 985121012761715 | 1          | 3164               | 1325-092          |
| 35            | BULL            | 94             | 7          | 985121011604434 | 1          | 3164               | 1325-093          |
| 36            | BULL            | 107            | 11         | 985121012722680 | 1          | 3164               | 1325-094          |
| 37            | BULL            | 98             | 8          | 985121012729816 | 1          | 3164               | 1325-095          |

| Record<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No.     | Run<br>No. | Duration (seconds) | Genetic<br>Vial # |
|---------------|-----------------|----------------|------------|-----------------|------------|--------------------|-------------------|
| 38            | BULL            | 144            | 25         | 985121012767122 | 1          | 3164               | 1325-096          |
| 39            | BULL            | 217            | 94         | 985121012611784 | 1          | 3164               | 1325-097          |
| 40            | BULL            | 184            | 48         | 985121011605503 | 1          | 3164               | 1325-098          |
| 41            | BULL            | 101            | 9          | 985121012721264 | 1          | 3164               | 1325-099          |
| 42            | BULL            | 162            | 34         | 985121011605005 | 1          | 3164               | 1325-100          |
| 43            | WCT             | 78             | 4          |                 | 1          | 3164               |                   |
| 44            | WCT             | 65             | 2          |                 | 1          | 3164               |                   |
| 45            | BULL            | 168            | 39         | 985121011605159 | 1          | 3164               | 1742-001          |
| 46            | BULL            | 81             | 5          | 985121012732550 | 1          | 3164               | 1742-002          |
| 47            | BULL            | 95             | 7          | 985121011604593 | 1          | 3164               | 1742-003          |
| 48            | BULL            | 100            | 9          | 985121012761439 | 1          | 3164               | 1742-004          |
| 49            | WCT             | 55             | 1          |                 | 3          | 1693               |                   |
| 50            | WCT             | 160            | 40         |                 | 3          | 1693               |                   |
| 51            | WCT             | 70             | 3          |                 | 3          | 1693               |                   |
| 52            | WCT             | 68             | 3          |                 | 3          | 1693               |                   |
| 53            | WCT             | 70             | 3          |                 | 3          | 1693               |                   |

Table C-10. Population Estimate Data collection during 2010 electrofishing in the West Fork Thompson River Site 1B, 3 Mile.

| Pass                   | BULL     | WCT   |
|------------------------|----------|-------|
| 1                      | 16       | 9     |
| 2                      | 6        | 10    |
| 3                      | 0        | 1     |
| Population<br>Estimate | 22       | 22    |
| 95% C.I.               | 22 to 22 | 21-35 |
| S.E.                   | 0.544    | 2.608 |
| p-bar                  | 0.786    | 0.546 |

# 2010 West Fork Thompson River Electrofishing Site 1.4L, Four Lakes Creek

Sampling Date 7/28/2010 Water Temp. 10.6°C Data Source: FWP

Table C-11. Data collection during 2010 electrofishing in the West Fork Thompson River Site 1.4L, Four Lakes Creek.

| Record<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No.     | Run<br>No. | Duration (seconds) | Genetic<br>Vial # |
|---------------|-----------------|----------------|------------|-----------------|------------|--------------------|-------------------|
| 1             | WCT             | 58             | 1          |                 | 2          | 3538               |                   |
| 2             | BULL            | 175            | 44         | 985121023457245 | 2          | 3538               | 001-C4            |
| 3             | BULL            | 158            | 33         | 985121021876612 | 2          | 3538               | 001-C5            |
| 4             | BULL            | 158            | 31         | 985121021914025 | 2          | 3538               | 001-D1            |
| 5             | BULL            | 163            | 34         | 985121021870141 | 1          | 5561               | 001-D2            |
| 6             | BULL            | 151            | 28         | 985121021877936 | 1          | 5561               | 001-D3            |
| 7             | BULL            | 159            | 32         | 98512102188104  | 1          | 5561               | 001-D4            |
| 8             | WCT             | 270            | 167        |                 | 1          | 5561               |                   |
| 9             | WCT             | 205            | 91         |                 | 1          | 5561               |                   |
| 10            | WCT             | 187            | 69         |                 | 1          | 5561               |                   |
| 11            | WCT             | 99             | 9          |                 | 1          | 5561               |                   |
| 12            | WCT             | 183            | 60         |                 | 1          | 5561               |                   |
| 13            | WCT             | 168            | 45         |                 | 1          | 5561               |                   |
| 14            | WCT             | 201            | 70         |                 | 1          | 5561               |                   |
| 15            | WCT             | 200            | 77         |                 | 1          | 5561               |                   |
| 16            | WCT             | 189            | 63         |                 | 1          | 5561               |                   |
| 17            | WCT             | 143            | 29         |                 | 1          | 5561               |                   |
| 18            | WCT             | 138            | 26         |                 | 1          | 5561               |                   |
| 19            | WCT             | 88             | 7          |                 | 1          | 5561               |                   |
| 20            | BULL            | 122            | 15         | 985121021914047 | 1          | 5561               | 001-E1            |
| 21            | BULL            | 167            | 39         | 985121021911737 | 1          | 5561               | 001-D5            |
| 22            | BULL            | 150            | 26         | 985121021912031 | 1          | 5561               | 001-E2            |
| 23            | BULL            | 159            | 39         | 985121021892816 | 1          | 5561               | 001-E3            |
| 24            | BULL            | 147            | 24         | 985121021882220 | 1          | 5561               | 001-E4            |
| 25            | BULL            | 130            | 17         | 985121021877957 | 1          | 5561               | 001-E5            |
| 26            | BULL            | 167            | 36         | 985121021900740 | 1          | 5561               | 001-F1            |
| 27            | BULL            | 200            | 63         | 985121021911912 | 1          | 5561               | 001-F2            |
| 28            | WCT             | 237            | 123        |                 | 1          | 5561               |                   |
| 29            | WCT             | 197            | 83         |                 | 1          | 5561               |                   |
| 30            | WCT             | 168            | 49         |                 | 1          | 5561               |                   |
| 31            | WCT             | 138            | 25         |                 | 1          | 5561               |                   |
| 32            | WCT             | 141            | 26         |                 | 1          | 5561               |                   |
| 33            | WCT             | 180            | 62         |                 | 1          | 5561               |                   |
| 34            | WCT             | 159            | 45         |                 | 1          | 5561               |                   |
| 35            | WCT             | 144            | 30         |                 | 1          | 5561               |                   |
| 36            | BULL            | 149            | 27         | 985121023446232 | 1          | 5561               | 001-F3            |
| 37            | BULL            | 186            | 57         | 985121021918653 | 1          | 5561               | 001-F4            |

| Record<br>No. | Species<br>Abbr | Length (mm) | Weight<br>(g) | PIT Tag No.     | Run<br>No. | Duration (seconds) | Genetic<br>Vial # |
|---------------|-----------------|-------------|---------------|-----------------|------------|--------------------|-------------------|
| 38            | BULL            | 176         | 41            | 985121021922203 | 1          | 5561               | 001-F5            |
| 39            | BULL            | 136         | 20            | 985121021870116 | 1          | 5561               | 001-G1            |
| 40            | BULL            | 192         | 59            | 985121021909727 | 1          | 5561               | 001-G2            |
| 41            | BULL            | 158         | 31            | 985121023465042 | 1          | 5561               | 001-G3            |
| 42            | WCT             | 157         | 42            |                 | 1          | 5561               |                   |
| 43            | BULL            | 187         | 58            | 985121021892080 | 1          | 5561               | 001-G4            |
| 44            | WCT             | 189         | 67            |                 | 1          | 5561               |                   |
| 45            | WCT             | 197         | 84            |                 | 1          | 5561               |                   |
| 46            | WCT             | 154         | 37            |                 | 1          | 5561               |                   |
| 47            | WCT             | 193         | 74            |                 | 1          | 5561               |                   |
| 48            | WCT             | 152         | 36            |                 | 1          | 5561               |                   |
| 49            | WCT             | 175         | 47            |                 | 1          | 5561               |                   |
| 50            | WCT             | 152         | 36            |                 | 1          | 5561               |                   |
| 51            | WCT             | 212         | 86            |                 | 1          | 5561               |                   |
| 52            | WCT             | 202         | 68            |                 | 1          | 5561               |                   |
| 53            | WCT             | 124         | 17            |                 | 1          | 5561               |                   |
| 54            | BULL            | 164         | 35            | 985121021899234 | 1          | 5561               | 001-G5            |
| 55            | BULL            | 166         | 38            | 985121021872648 | 1          | 5561               | 001-H1            |
| 56            | BULL            | 132         | 18            | 985121021875767 | 1          | 5561               | 001-H2            |
| 57            | BULL            | 157         | 33            | 985121021909678 | 1          | 5561               | 001-H3            |
| 58            | BULL            | 163         | 35            | 985121021916109 | 1          | 5561               | 001-H4            |
| 59            | BULL            | 153         | 29            | 985121021916215 | 1          | 5561               | 001-H5            |
| 60            | BULL            | 150         | 29            | 985121021899230 | 1          | 5561               | 001-I1            |

Table C-12. Population Estimate Data collection during 2010 electrofishing in the West Fork Thompson River Site 1.4L, Four Lakes Creek.

| Pass                 | BULL               | WCT                | All                     |
|----------------------|--------------------|--------------------|-------------------------|
| 1                    | 25                 | 31                 | 56                      |
| 2                    | 3                  | 0                  | 3                       |
| Population           |                    |                    |                         |
|                      |                    |                    |                         |
| Estimate             | 29                 | 31                 | 60                      |
| Estimate<br>95% C.I. | <b>29</b><br>28-32 | <b>31</b><br>31-31 | <b>60</b><br>3          |
|                      |                    | _                  | <b>60</b><br>3<br>1.126 |

# 2010 West Fork Thompson River Electrofishing Anne Creek

Sampling Date 7/29/2010

Data Source: FWP Latitude N.47.70968 Longitude W.115.20719

Note: No Duration Provided in Data File.

Table C-13. Data collection during 2010 electrofishing in the West Fork Thompson River, Anne Creek.

| Record<br>No. | Species<br>Abbr | Length<br>(mm) | Weight<br>(g) | PIT Tag No.     | Run<br>No. | Genetic<br>Vial # |
|---------------|-----------------|----------------|---------------|-----------------|------------|-------------------|
| 1             | WCT             | 137            | 25            |                 | 1          |                   |
| 2             | WCT             | 189            | 59            |                 | 1          |                   |
| 3             | WCT             | 183            | 54            |                 | 1          |                   |
| 4             | WCT             | 168            | 43            |                 | 1          |                   |
| 5             | WCT             | 177            | 55            |                 | 1          |                   |
| 6             | WCT             | 138            | 25            |                 | 1          |                   |
| 7             | WCT             | 113            | 13            |                 | 1          |                   |
| 8             | WCT             | 142            | 28            |                 | 1          |                   |
| 9             | BULL            | 121            | 13            | 985121021909310 | 1          | 002-A1            |
| 10            | BULL            | 115            | 12            | 985121021918337 | 1          | 002-A2            |
| 11            | BULL            | 127            | 14            | 985121021882093 | 1          | 002-A3            |
| 12            | BULL            | 112            | 10            | 985121021888062 | 1          | 002-A4            |
| 13            | BULL            | 85             | 4             | 985121021909503 | 1          | 002-A5            |
| 14            | BULL            | 85             | 5             | 985121021916174 | 1          | 002-B1            |
| 15            | BULL            | 78             | 4             | 985121021903670 | 1          | 002-B2            |
| 16            | WCT             | 183            | 57            |                 | 1          |                   |
| 17            | WCT             | 230            | 109           |                 | 1          |                   |
| 18            | WCT             | 204            | 70            |                 | 1          |                   |
| 19            | WCT             | 187            | 64            |                 | 1          |                   |
| 20            | WCT             | 173            | 46            |                 | 1          |                   |
| 21            | WCT             | 248            | 117           |                 | 1          |                   |
| 22            | WCT             | 139            | 23            |                 | 1          |                   |
| 23            | WCT             | 125            | 17            |                 | 1          |                   |
| 24            | WCT             | 125            | 19            |                 | 1          |                   |
| 25            | BULL            | 83             | 3             | 985121021886139 | 1          | 002-B3            |
| 26            | BULL            | 190            | 50            | 985121021918448 | 1          | 002-B4            |
| 27            | WCT             | 221            | 104           |                 | 1          |                   |
| 28            | WCT             | 229            | 110           |                 | 1          |                   |
| 29            | WCT             | 205            | 69            |                 | 1          |                   |
| 30            | WCT             | 184            | 65            |                 | 1          |                   |
| 31            | WCT             | 152            | 33            |                 | 1          |                   |
| 32            | WCT             | 154            | 33            |                 | 1          |                   |
| 33            | WCT             | 167            | 48            |                 | 1          |                   |
| 34            | WCT             | 129            | 21            |                 | 1          |                   |
| 35            | WCT             | 133            | 22            |                 | 1          |                   |
| 36            | WCT             | 98             | 8             |                 | 1          |                   |
| 37            | BULL            | 83             | 4             | 985121021916046 | 1          | 002-B5            |

| Record<br>No. | Species<br>Abbr | Length<br>(mm) | Weight (g) | PIT Tag No.     | Run<br>No. | Genetic<br>Vial # |
|---------------|-----------------|----------------|------------|-----------------|------------|-------------------|
| 38            | BULL            | 114            | 12         | 985121021883006 | 1          | 002-C1            |
| 39            | BULL            | 123            | 13         | 985121021878795 | 1          | 002-C2            |
| 40            | BULL            | 124            | 13         | 985121021920634 | 1          | 002-C3            |
| 41            | BULL            | 128            | 15         | 985121021918504 | 1          | 002-C4            |
| 42            | WCT             | 206            | 80         |                 | 2          |                   |
| 43            | WCT             | 171            | 42         |                 | 2          |                   |
| 44            | WCT             | 106            | 9          |                 | 2          |                   |
| 45            | BULL            | 80             | 4          | 985121021918662 | 2          | 002-C5            |
| 46            | BULL            | 104            | 8          | 985121021918294 | 2          | 002-D1            |
| 47            | BULL            | 124            | 15         | 985121021885663 | 2          | 002-D2            |
| 48            | BULL            | 217            | 96         | 985121021892741 | 2          | 002-D3            |
| 49            | WCT             | 62             | 1          |                 | 2          |                   |
| 50            | BULL            | 70             | 2          |                 | 2          | 002-D4            |
| 51            | BULL            | 89             | 5          | 985121023369734 | 2          | 002-D5            |
| 52            | BULL            | 115            | 10         | 985121021911735 | 2          | 002-E1            |
| 53            | BULL            | 129            | 14         | 985121021911506 | 2          | 002-E2            |
| 54            | BULL            | 131            | 17         | 985121021915898 | 3          | 002-E3            |
| 55            | WCT             | 158            | 34         |                 | 3          |                   |
| 56            | BULL            | 70             | 2          |                 | 3          |                   |
| 57            | BULL            | 81             | 3          |                 | 3          |                   |

Table C-14. Population Estimate Data collection during 2010 electrofishing in the West Fork Thompson River, Anne Creek.

| Pass                | BULL  | WCT   |
|---------------------|-------|-------|
| 1                   | 14    | 27    |
| 2                   | 7     | 3     |
| 3                   | 2     | 1     |
| Population Estimate | 24    | 31    |
| 95% C.I.            | 24-32 | 31-31 |
| S.E.                | 1.496 | 0.309 |
| p-bar               | 0.647 | 0.861 |

# Appendix D – 2011 Fishtrap Creek Data

#### 2011 Fishtrap Creek Electrofishing Section 2.4, Fishtrap Creek

Sampling Date 7/29/2011

Water Temp. 9°C

Section length: 110 m; Average Section width: 4.2 m

Data Collectors: TT, RD, EF Latitude N.47.87699 Longitude W.115.17696 Electrofishing settings: Hz = 40; mS = 2; Volts = 200; Conductivity = 356

Duration  $1^{st}$  Pass = 4,399; Duration  $2^{nd}$  Pass = 2,844

Tailed frogs: Absent; Sculpin: Absent

Note: no fish were PIT tagged or sampled for genetics in this reach.

Table D-1. Data collection during 2011 electrofishing in Fishtrap Creek, Section 2.4.

| Species | Length | Weight | Pass<br># |
|---------|--------|--------|-----------|
| WCT     | 77     | 4      | 1         |
| WCT     | 79     | 4      | 1         |
| WCT     | 82     | 5      | 1         |
| WCT     | 86     | 5      | 1         |
| WCT     | 87     | 6      | 1         |
| WCT     | 90     | 7      | 1         |
| WCT     | 91     | 6      | 1         |
| WCT     | 93     | 8      | 1         |
| WCT     | 96     | 8      | 1         |
| WCT     | 98     | 8      | 1         |
| WCT     | 98     | 10     | 1         |
| WCT     | 98     | 8      | 1         |
| WCT     | 100    | 10     | 1         |
| WCT     | 101    | 9      | 1         |
| WCT     | 103    | 9      | 1         |
| WCT     | 104    | 11     | 1         |
| WCT     | 104    | 13     | 1         |
| WCT     | 105    | 12     | 1         |
| WCT     | 106    | 10     | 1         |
| WCT     | 106    | 10     | 1         |
| WCT     | 110    | 12     | 1         |
| WCT     | 119    | 16     | 1         |
| WCT     | 119    | 15     | 1         |
| WCT     | 120    | 16     | 1         |
| WCT     | 128    | 20     | 1         |
| WCT     | 129    | 18     | 1         |
| WCT     | 129    | 20     | 1         |
| WCT     | 130    | 19     | 1         |
| WCT     | 133    | 20     | 1         |
| WCT     | 134    | 22     | 1         |
| WCT     | 135    | 22     | 1         |

| Species | Length | Weight | Pass<br>#        |
|---------|--------|--------|------------------|
| WCT     | 137    | 23     | 1                |
| WCT     | 138    | 25     | 1                |
| WCT     | 138    | 24     | 1                |
| WCT     | 144    | 28     | 1                |
| WCT     | 145    | 30     | 1                |
| WCT     | 146    | 29     | 1                |
| WCT     | 147    | 28     | 1                |
| WCT     | 155    | 34     | 1                |
| WCT     | 156    | 32     | 1                |
| WCT     | 158    | 36     | 1                |
| WCT     | 162    | 37     | 1                |
| WCT     | 162    | 39     | 1                |
| WCT     | 177    | 50     | 1                |
| WCT     | 177    | 51     | 1                |
| WCT     | 78     | 4      | 2                |
| WCT     | 85     | 4      | 2                |
| WCT     | 88     | 6      | 2<br>2<br>2      |
| WCT     | 89     | 7      | 2                |
| WCT     | 98     | 8      | 2                |
| WCT     | 116    | 14     | 2                |
| WCT     | 126    | 18     | 2<br>2<br>2<br>2 |
| WCT     | 132    | 21     | 2                |
| WCT     | 135    | 20     | 2                |
| WCT     | 166    | 43     | 2                |

## 2011 Fishtrap Creek Electrofishing Section 2.3, Fishtrap Creek

Sampling Date 7/26/2011

Water Temp. 12°C

Section length: 100 m; Average Section width: 5.0 m

Data Collectors: TT, RD, EF Latitude N.47.85820 Longitude W.115.15334 Electrofishing settings: Hz = 40; mS = 2; Volts = 200; Conductivity = 361 Duration  $1^{st}$  Pass = 4,747; Duration  $2^{nd}$  Pass = 3,007; Duration  $3^{rd}$  Pass = 1,821

Tailed frogs: Absent; Sculpin: Common

Table D-2. Data collection during 2011 electrofishing in Fishtrap Creek, Section 2.3.

|         |        |        |        | Genetic | Scale  | CCR, OCCHOII 2.0. |
|---------|--------|--------|--------|---------|--------|-------------------|
| Species | Length | Weight | Pass # | Sample  | Sample | PIT Tag No.       |
| BULL    | 123    | 15     | 1      | 1743-73 |        | 985121026919071   |
| BULL    | 133    | 18     | 1      | 1743-74 |        | 985121026889047   |
| BULL    | 141    | 22     | 1      | 1743-71 | 34     | 985121026936511   |
| BULL    | 178    | 43     | 1      | 1743-72 | 35     | 985121026923609   |
| WCT     | 77     | 4      | 1      |         |        |                   |
| WCT     | 78     | 4      | 1      |         |        |                   |
| WCT     | 85     | 6      | 1      |         |        |                   |
| WCT     | 87     | 6      | 1      |         |        |                   |
| WCT     | 87     | 6      | 1      |         |        |                   |
| WCT     | 87     | 6      | 1      |         |        |                   |
| WCT     | 88     | 6      | 1      |         |        |                   |
| WCT     | 89     | 7      | 1      |         |        |                   |
| WCT     | 89     | 8      | 1      |         |        |                   |
| WCT     | 90     | 7      | 1      |         |        |                   |
| WCT     | 92     | 7      | 1      |         |        |                   |
| WCT     | 93     | 8      | 1      |         |        |                   |
| WCT     | 93     | 7      | 1      |         |        |                   |
| WCT     | 94     | 7      | 1      |         |        |                   |
| WCT     | 95     | 7      | 1      |         |        |                   |
| WCT     | 95     | 8      | 1      |         |        |                   |
| WCT     | 95     | 7      | 1      |         |        |                   |
| WCT     | 97     | 8      | 1      |         |        |                   |
| WCT     | 98     | 8      | 1      |         |        |                   |
| WCT     | 99     | 8      | 1      |         |        |                   |
| WCT     | 99     | 9      | 1      |         |        |                   |
| WCT     | 100    | 9      | 1      |         |        |                   |
| WCT     | 105    | 10     | 1      |         |        |                   |
| WCT     | 106    | 10     | 1      |         |        |                   |
| WCT     | 107    | 11     | 1      |         |        |                   |
| WCT     | 110    | 11     | 1      |         |        |                   |
| WCT     | 111    | 13     | 1      |         |        |                   |
| WCT     | 112    | 13     | 1      |         |        |                   |
| WCT     | 113    | 12     | 1      |         |        |                   |
| WCT     | 118    | 13     | 1      |         |        |                   |
| WCT     | 120    | 14     | 1      |         |        |                   |
| WCT     | 125    | 18     | 1      |         |        |                   |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|
| WCT     | 127    | 17     | 1      |                   |                 |                 |
| WCT     | 130    | 19     | 1      |                   |                 |                 |
| WCT     | 132    | 20     | 1      |                   |                 |                 |
| WCT     | 132    | 19     | 1      |                   |                 |                 |
| WCT     | 137    | 22     | 1      |                   |                 |                 |
| WCT     | 141    | 23     | 1      |                   |                 |                 |
| WCT     | 148    | 28     | 1      |                   |                 |                 |
| WCT     | 151    | 32     | 1      |                   |                 |                 |
| WCT     | 155    | 30     | 1      |                   |                 |                 |
| WCT     | 170    | 46     | 1      |                   |                 |                 |
| WCT     | 196    | 64     | 1      |                   |                 |                 |
| WCT     | 197    | 75     | 1      |                   |                 |                 |
| WCT     | 201    | 75     | 1      |                   |                 |                 |
| WCT     | 201    | 67     | 1      |                   |                 |                 |
| BULL    | 122    | 15     | 2      | 1743-69           |                 | 985121026866311 |
| BULL    | 136    | 19     | 2      | 1743-67           |                 | 985121026938274 |
| BULL    | 141    | 24     | 2      | 1743-66           | 32              | 985121026957752 |
| BULL    | 146    | 24     | 2      | 1743-68           | 33              | 985121026926769 |
| BULL    | 157    | 31     | 2      | 1743-65           | 31              | 985121026916678 |
| WCT     | 82     | 5      | 2      |                   |                 |                 |
| WCT     | 82     | 5      | 2      |                   |                 |                 |
| WCT     | 89     | 6      | 2      |                   |                 |                 |
| WCT     | 89     | 6      | 2      |                   |                 |                 |
| WCT     | 89     | 6      | 2      |                   |                 |                 |
| WCT     | 90     | 6      | 2      |                   |                 |                 |
| WCT     | 95     | 8      | 2      |                   |                 |                 |
| WCT     | 97     | 7      | 2      |                   |                 |                 |
| WCT     | 106    | 11     | 2      |                   |                 |                 |
| WCT     | 110    | 13     | 2      |                   |                 |                 |
| WCT     | 125    | 17     | 2      |                   |                 |                 |
| WCT     | 128    | 19     | 2      |                   |                 |                 |
| WCT     | 141    | 21     | 2      |                   |                 |                 |
| WCT     | 146    | 29     | 2      |                   |                 |                 |
| WCT     | 147    | 25     | 2      |                   |                 |                 |
| WCT     | 169    | 45     | 2      |                   |                 |                 |
| WCT     | 176    | 44     | 2      |                   |                 |                 |
| BULL    | 202    | 68     | 3      |                   |                 | 985121026930715 |
| WCT     | 77     | 4      | 3      |                   |                 |                 |
| WCT     | 89     | 6      | 3      |                   |                 |                 |
| WCT     | 100    | 9      | 3      |                   |                 |                 |
| WCT     | 122    | 16     | 3      |                   |                 |                 |
| WCT     | 136    | 21     | 3      |                   |                 |                 |
| WCT     | 140    | 24     | 3      |                   |                 |                 |
| WCT     | 149    | 26     | 3      |                   |                 |                 |
| WCT     | 180    | 57     | 3      |                   |                 |                 |

# 2011 Fishtrap Creek Electrofishing Section 2.1, Fishtrap Creek (just above Shale Creek)

Sampling Date 7/15/2011

Water Temp. 10°C

Section length: 107 m; Average Section width: 5.8 m

Data Collectors: TT, RD, EF Latitude N.47.82444 Longitude W.115.16068 Electrofishing settings: Hz = 40; mS = 1.8; Volts = 400; Conductivity = 244 Duration  $1^{st}$  Pass = 3,525; Duration  $2^{nd}$  Pass = 1,392; Duration  $3^{rd}$  Pass = 993

Tailed frogs: Absent; Sculpin: Absent

Table D-3. Data collection during 2011 electrofishing in Fishtrap Creek, Section 2.1.

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|
| BULL    | 112    | 12     | 1      | 1743-60           |                 | 985121026916392 |
| BULL    | 117    | 13     | 1      | 1743-56           |                 | 985121026857633 |
| BULL    | 123    | 16     | 1      | 1743-55           |                 | 985121012767933 |
| BULL    | 128    | 17     | 1      | 1743-59           |                 | 985121026806592 |
| BULL    | 147    | 28     | 1      | 1743-61           | 30              | 985121026842882 |
| WCT     | 75     | 4      | 1      |                   |                 |                 |
| WCT     | 78     | 4      | 1      |                   |                 |                 |
| WCT     | 82     | 5      | 1      |                   |                 |                 |
| WCT     | 82     | 5      | 1      |                   |                 |                 |
| WCT     | 85     | 5      | 1      |                   |                 |                 |
| WCT     | 86     | 6      | 1      |                   |                 |                 |
| WCT     | 92     | 7      | 1      |                   |                 |                 |
| WCT     | 92     | 7      | 1      |                   |                 |                 |
| WCT     | 95     | 8      | 1      |                   |                 |                 |
| WCT     | 95     | 8      | 1      |                   |                 |                 |
| WCT     | 97     | 10     | 1      |                   |                 |                 |
| WCT     | 122    | 17     | 1      |                   |                 |                 |
| WCT     | 148    | 27     | 1      |                   |                 |                 |
| WCT     | 233    | 121    | 1      |                   |                 |                 |
| WCT     | 88     | 7      | 2      |                   |                 |                 |
| WCT     | 101    | 9      | 2      |                   |                 |                 |
| WCT     | 102    | 11     | 2      |                   |                 |                 |
| WCT     | 110    | 12     | 2      |                   |                 |                 |
| WCT     | 118    | 14     | 2      |                   |                 |                 |
| No Fish |        |        | 3      |                   |                 |                 |

# 2011 Fishtrap Creek Electrofishing Section 2.2, Fishtrap Creek

Sampling Date 7/13/2011

Water Temp. 13°C

Section length: 107 m; Average Section width: 3.1 m

Data Collectors: TT, RD, EF Latitude N.47.84532 Longitude W.115.16411 Electrofishing settings: Hz = 40; mS = 1.8; Volts = 200; Conductivity = 338 Duration  $1^{st}$  Pass = 2,357; Duration  $2^{nd}$  Pass = 1,435; Duration  $3^{rd}$  Pass = 904

Tailed frogs: Absent; Sculpin: Absent

Table D-4. Data collection during 2011 electrofishing in Fishtrap Creek, Section 2.2.

| Species | Length | Weight | Pass #  | Genetic | Scale  | PIT Tag No.     |
|---------|--------|--------|---------|---------|--------|-----------------|
| Opeoies | Longin | Weight | 1 433 # | Sample  | Sample | Till lug ito.   |
| BULL    | 123    | 16     | 1       | 1743-39 | 7      | 985121012725810 |
| BULL    | 127    | 14     | 1       |         | 11     | 985121012612349 |
| BULL    | 133    | 19     | 1       |         | 10     | 985121012731955 |
| BULL    | 143    | 27     | 1       | 1743-38 | 6      | 985121012730363 |
| BULL    | 150    | 26     | 1       |         | 9      | 985121012760547 |
| BULL    | 161    | 34     | 1       | 1743-40 | 8      | 985121011606845 |
| BULL    | 175    | 43     | 1       | 1743-36 | 4      | 985121012642303 |
| BULL    | 190    | 52     | 1       | 1743-37 | 5      | 985121012721269 |
| WCT     | 70     | 4      | 1       |         |        |                 |
| WCT     | 76     | 5      | 1       |         |        |                 |
| WCT     | 90     | 6      | 1       |         |        |                 |
| WCT     | 93     | 7      | 1       |         |        |                 |
| WCT     | 95     | 7      | 1       |         |        |                 |
| WCT     | 95     | 7      | 1       |         |        |                 |
| WCT     | 95     | 8      | 1       |         |        |                 |
| WCT     | 97     | 7      | 1       |         |        |                 |
| WCT     | 100    | 9      | 1       |         |        |                 |
| WCT     | 107    | 13     | 1       |         |        |                 |
| WCT     | 118    | 12     | 1       |         |        |                 |
| WCT     | 126    | 17     | 1       |         |        |                 |
| WCT     | 133    | 20     | 1       |         |        |                 |
| WCT     | 141    | 26     | 1       |         |        |                 |
| WCT     | 146    | 30     | 1       |         |        |                 |
| WCT     | 148    | 27     | 1       |         |        |                 |
| WCT     | 149    | 29     | 1       |         |        |                 |
| WCT     | 149    | 30     | 1       |         |        |                 |
| WCT     | 151    | 32     | 1       |         |        |                 |
| WCT     | 151    | 31     | 1       |         |        |                 |
| WCT     | 151    | 34     | 1       |         |        |                 |
| WCT     | 152    | 33     | 1       |         |        |                 |
| WCT     | 152    | 29     | 1       |         |        |                 |
| WCT     | 155    | 35     | 1       |         |        |                 |
| WCT     | 160    | 36     | 1       |         |        |                 |
| WCT     | 161    | 41     | 1       |         |        |                 |
| WCT     | 166    | 42     | 1       |         |        |                 |
| WCT     | 168    | 43     | 1       |         |        |                 |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|
| WCT     | 168    | 39     | 1      |                   |                 |                 |
| WCT     | 172    | 45     | 1      |                   |                 |                 |
| WCT     | 210    | 92     | 1      |                   |                 |                 |
| BULL    | 136    | 20     | 2      | 1743-34           | 3               | 985121012765606 |
| BULL    | 161    | 33     | 2      | 1743-33           | 2               | 985121011606725 |
| BULL    | 254    | 129    | 2      | 1743-32           | 1               | 985121011607619 |
| WCT     | 96     | 8      | 2      |                   |                 |                 |
| WCT     | 102    | 11     | 2      |                   |                 |                 |
| WCT     | 108    | 11     | 2      |                   |                 |                 |
| WCT     | 115    | 14     | 2      |                   |                 |                 |
| WCT     | 135    | 23     | 2      |                   |                 |                 |
| WCT     | 138    | 25     | 2      |                   |                 |                 |
| WCT     | 163    | 42     | 2      |                   |                 |                 |
| WCT     | 168    | 47     | 2      |                   |                 |                 |
| WCT     | 171    | 51     | 2      |                   |                 |                 |
| BULL    | 136    | 21     | 3      |                   |                 | 985121012764777 |
| WCT     | 81     | 5      | 3      |                   |                 |                 |
| WCT     | 99     | 9      | 3      |                   |                 |                 |
| WCT     | 101    | 9      | 3      |                   |                 |                 |
| WCT     | 120    | 19     | 3      |                   |                 |                 |
| WCT     | 139    | 22     | 3      |                   |                 |                 |
| WCT     | 140    | 24     | 3      |                   |                 |                 |
| WCT     | 142    | 26     | 3      |                   |                 |                 |
| WCT     | 170    | 50     | 3      |                   |                 |                 |

#### 2011 Fishtrap Creek Electrofishing Section 1.1, Fishtrap Creek (Plum Creek LWD site)

Sampling Date 8/9/2011

Water Temp. 8°C

Section length: 130 m; Average Section width: 10.0 m

Data Collectors: TT, RD, EF, JS, HC, TB Latitude N.47.77366 Longitude W.115.07689

Electrofishing settings: Hz = 40; mS = 2; Volts = 400; Conductivity = 177 Duration  $1^{st}$  Pass = 3,219; Duration  $2^{nd}$  Pass = 2,290; Duration  $3^{rd}$  Pass = 1,626

Tailed frogs: Few; Sculpin: Absent

Table D-5. Data collection during 2011 electrofishing in Fishtrap Creek, Section 1.1.

| BULL         137         22         1         1743-99         98512102           BULL         177         44         1         1743-100         58         98512102           BULL         193         60         1         1968-3         60         98512102           BULL         232         100         1         1968-2         59         98512102           MWF         250         165         1         1         1968-2         59         98512102           MWF         250         165         1         1         1968-2         59         98512102           MWT         250         165         1         1         1968-2         59         98512102           MWT         250         165         1         1         1968-2         59         98512102           WCT         86         5         1         1         1968-2         59         98512102           WCT         86         5         1         1         100         1         100         1         100         1         100         1         100         1         100         1         100         1         100         1 | g No.   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| BULL     177     44     1     1743-100     58     98512102       BULL     193     60     1     1968-3     60     98512102       BULL     232     100     1     1968-2     59     98512102       MWF     250     165     1       RB     190     64     1       WCT     86     5     1       WCT     91     6     1       WCT     93     8     1       WCT     99     9     1       WCT     102     10     1       WCT     148     33     1       WCT     148     33     1       WCT     175     57     1       WCT     229     123     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |
| BULL         193         60         1         1968-3         60         98512102           BULL         232         100         1         1968-2         59         98512102           MWF         250         165         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<         | 6882858 |
| BULL         232         100         1         1968-2         59         98512102           MWF         250         165         1         1         1968-2         59         98512102           MWF         250         165         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<         | 6900568 |
| MWF         250         165         1           RB         190         64         1           WCT         86         5         1           WCT         88         6         1           WCT         91         6         1           WCT         93         8         1           WCT         99         9         1           WCT         102         10         1           WCT         118         15         1           WCT         148         33         1           WCT         151         31         1           WCT         175         57         1           WCT         229         123         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6866359 |
| RB       190       64       1         WCT       86       5       1         WCT       88       6       1         WCT       91       6       1         WCT       93       8       1         WCT       99       9       1         WCT       102       10       1         WCT       118       15       1         WCT       148       33       1         WCT       151       31       1         WCT       175       57       1         WCT       229       123       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6857622 |
| WCT     86     5     1       WCT     88     6     1       WCT     91     6     1       WCT     93     8     1       WCT     99     9     1       WCT     102     10     1       WCT     118     15     1       WCT     148     33     1       WCT     151     31     1       WCT     175     57     1       WCT     229     123     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| WCT         88         6         1           WCT         91         6         1           WCT         93         8         1           WCT         99         9         1           WCT         102         10         1           WCT         118         15         1           WCT         148         33         1           WCT         151         31         1           WCT         175         57         1           WCT         229         123         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| WCT     91     6     1       WCT     93     8     1       WCT     99     9     1       WCT     102     10     1       WCT     118     15     1       WCT     148     33     1       WCT     151     31     1       WCT     175     57     1       WCT     229     123     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| WCT     93     8     1       WCT     99     9     1       WCT     102     10     1       WCT     118     15     1       WCT     148     33     1       WCT     151     31     1       WCT     175     57     1       WCT     229     123     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| WCT         99         9         1           WCT         102         10         1           WCT         118         15         1           WCT         148         33         1           WCT         151         31         1           WCT         175         57         1           WCT         229         123         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| WCT     102     10     1       WCT     118     15     1       WCT     148     33     1       WCT     151     31     1       WCT     175     57     1       WCT     229     123     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| WCT     118     15     1       WCT     148     33     1       WCT     151     31     1       WCT     175     57     1       WCT     229     123     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| WCT     148     33     1       WCT     151     31     1       WCT     175     57     1       WCT     229     123     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
| WCT         151         31         1           WCT         175         57         1           WCT         229         123         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| WCT 175 57 1<br>WCT 229 123 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| WCT 229 123 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| WCT 246 162 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| VVC1   240   102   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| MWF 227 108 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| MWF 253 169 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| WCT 93 8 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| WCT 95 9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| WCT 104 11 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| WCT 116 15 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| WCT 152 37 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| WCT 170 51 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| WCT 173 50 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| WCT 95 7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| WCT 101 9 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |

## 2011 Fishtrap Creek Electrofishing Section 1-4 mile, Fishtrap Creek

Sampling Date 8/10/2011

Water Temp. 10°C

Section length: 128 m; Average Section width: 9.6 m

Data Collectors: TT, RD, EF, JS, HC, TB Latitude N.47.76407 Longitude W.115.07514

Electrofishing settings: Hz = 40; mS = 2; Volts = 400; Conductivity = 179

Duration  $1^{st}$  Pass = 2,870; Duration  $2^{nd}$  Pass = 1,962

Tailed frogs: Absent; Sculpin: Absent

Table D-6. Data collection during 2011 electrofishing in Fishtrap Creek, Section 1-4 mile.

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|
| BULL    | 163    | 40     | 1      |                   |                 | 985121026927066 |
| BULL    | 198    | 68     | 1      |                   | 61              | 985121026943338 |
| MWF     | 130    | 21     | 1      |                   |                 |                 |
| MWF     | 145    | 25     | 1      |                   |                 |                 |
| MWF     | 235    | 121    | 1      |                   |                 |                 |
| MWF     | 247    | 159    | 1      |                   |                 |                 |
| MWF     | 258    | 162    | 1      |                   |                 |                 |
| MWF     | 266    | 174    | 1      |                   |                 |                 |
| WCT     | 72     | 3      | 1      |                   |                 |                 |
| WCT     | 82     | 6      | 1      |                   |                 |                 |
| WCT     | 91     | 11     | 1      |                   |                 |                 |
| WCT     | 94     | 8      | 1      |                   |                 |                 |
| WCT     | 95     | 8      | 1      |                   |                 |                 |
| WCT     | 95     | 8      | 1      |                   |                 |                 |
| WCT     | 96     | 8      | 1      |                   |                 |                 |
| WCT     | 96     | 11     | 1      |                   |                 |                 |
| WCT     | 96     | 9      | 1      |                   |                 |                 |
| WCT     | 104    | 11     | 1      |                   |                 |                 |
| WCT     | 105    | 11     | 1      |                   |                 |                 |
| WCT     | 109    | 15     | 1      |                   |                 |                 |
| WCT     | 109    | 13     | 1      |                   |                 |                 |
| WCT     | 110    | 13     | 1      |                   |                 |                 |
| WCT     | 111    | 14     | 1      |                   |                 |                 |
| WCT     | 111    | 15     | 1      |                   |                 |                 |
| WCT     | 116    | 16     | 1      |                   |                 |                 |
| WCT     | 118    | 16     | 1      |                   |                 |                 |
| WCT     | 119    | 17     | 1      |                   |                 |                 |
| WCT     | 120    | 18     | 1      |                   |                 |                 |
| WCT     | 125    | 22     | 1      |                   |                 |                 |
| WCT     | 127    | 21     | 1      |                   |                 |                 |
| WCT     | 131    | 22     | 1      |                   |                 |                 |
| WCT     | 135    | 26     | 1      |                   |                 |                 |
| WCT     | 175    | 57     | 1      |                   |                 |                 |
| WCT     | 181    | 60     | 1      |                   |                 |                 |
| WCT     | 216    | 103    | 1      |                   |                 |                 |
| WCT     | 256    | 185    | 1      |                   |                 |                 |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No. |
|---------|--------|--------|--------|-------------------|-----------------|-------------|
| RBxWCT  | 102    | 11     | 1      |                   |                 |             |
| RBxWCT  | 108    | 14     | 1      |                   |                 |             |
| WCT     | 84     | 6      | 2      |                   |                 |             |
| WCT     | 96     | 7      | 2      |                   |                 |             |
| WCT     | 102    | 12     | 2      |                   |                 |             |
| WCT     | 106    | 13     | 2      |                   |                 |             |
| WCT     | 126    | 22     | 2      |                   |                 |             |

# 2011 Fishtrap Creek Electrofishing Section 1.2, Fishtrap Creek (At Beatrice Creek Bridge)

Sampling Date 8/29/2011

Water Temp. 9°C

Section length: 100 m; Average Section width: 9.4 m

Data Collectors: TT, RD, HC Latitude N.47.78917 Longitude W.115.10139 Electrofishing settings: Hz = 50; mS = 2; Volts = 400; Conductivity = 73 Duration  $1^{st}$  Pass = 4,691; Duration  $2^{nd}$  Pass = 2,602

Tailed frogs: Few; Sculpin: One

Table D-7. <u>Data collection during 2011 electrofishing in Fishtrap Creek, Section</u> 1.2.

| Species     | Length | Weight | Pass # | Scale<br>Sample | PIT Tag No.     |
|-------------|--------|--------|--------|-----------------|-----------------|
| BULL        | 126    | 18     | 1      |                 | 985121026832152 |
| BULL        | 127    | 17     | 1      |                 | 985121026837007 |
| BULL        | 140    | 22     | 1      |                 | 985121026895619 |
| BULL        | 140    | 22     | 1      |                 | 985121026868965 |
| BULL        | 151    | 30     | 1      |                 | 985121026920996 |
| BULL        | 153    | 30     | 1      |                 | 985121026896000 |
| BULL        | 155    | 32     | 1      |                 | 985121026919955 |
| BULL        | 157    | 31     | 1      |                 | 985121026855444 |
| BULL        | 160    | 35     | 1      |                 |                 |
| BULL        | 174    | 42     | 1      |                 | 985121026912111 |
| BULL        | 180    | 47     | 1      | 74              | 985121026855417 |
| MWF         | 231    | 138    | 1      |                 |                 |
| MWF         | 242    | 166    | 1      |                 |                 |
| MWF         | 288    | 245    | 1      |                 |                 |
| MWF         | 332    | 384    | 1      |                 |                 |
| WCT         | 62     | 1      | 1      |                 |                 |
| WCT         | 65     | 3      | 1      |                 |                 |
| WCT         | 66     | 2      | 1      |                 |                 |
| WCT         | 66     | 2      | 1      |                 |                 |
| WCT         | 66     | 3      | 1      |                 |                 |
| WCT         | 71     | 3      | 1      |                 |                 |
| WCT         | 87     | 6      | 1      |                 |                 |
| WCT         | 89     | 7      | 1      |                 |                 |
| WCT         | 90     | 8      | 1      |                 |                 |
| WCT         | 95     | 7      | 1      |                 |                 |
| WCT         | 95     | 8      | 1      |                 |                 |
| WCT         | 99     | 9      | 1      |                 |                 |
| WCT         | 101    | 9      | 1      |                 |                 |
| WCT         |        |        |        |                 |                 |
| (mortality) | 106    | 12     | 1      |                 |                 |
| WCT         | 106    | 10     | 1      |                 |                 |
| WCT         | 107    | 11     | 1      |                 |                 |
| WCT         | 109    | 12     | 1      |                 |                 |
| WCT         | 110    | 12     | 1      |                 |                 |
| WCT         | 111    | 12     | 1      |                 |                 |
| WCT         | 113    | 15     | 1      |                 |                 |
| WCT         | 121    | 16     | 1      |                 |                 |

| Species | Length | Weight | Pass # | Scale<br>Sample | PIT Tag No.     |
|---------|--------|--------|--------|-----------------|-----------------|
| WCT     | 150    | 33     | 1      |                 |                 |
| WCT     | 160    | 41     | 1      |                 |                 |
| WCT     | 160    | 40     | 1      |                 |                 |
| WCT     | 161    | 38     | 1      |                 |                 |
| WCT     | 166    | 47     | 1      |                 |                 |
| WCT     | 167    | 49     | 1      |                 |                 |
| WCT     | 171    | 48     | 1      |                 |                 |
| WCT     | 172    | 49     | 1      |                 |                 |
| WCT     | 175    | 53     | 1      |                 |                 |
| WCT     | 177    | 52     | 1      |                 |                 |
| WCT     | 179    | 56     | 1      |                 |                 |
| WCT     | 180    | 60     | 1      |                 |                 |
| WCT     | 182    | 65     | 1      |                 |                 |
| WCT     | 195    | 69     | 1      |                 |                 |
| WCT     | 200    | 82     | 1      |                 |                 |
| WCT     | 202    | 85     | 1      |                 |                 |
| WCT     | 205    | 92     | 1      |                 |                 |
| WCT     | 206    | 97     | 1      |                 |                 |
| WCT     | 212    | 86     | 1      |                 |                 |
| WCT     | 215    | 110    | 1      |                 |                 |
| WCT     | 217    | 132    | 1      |                 |                 |
| WCT     | 220    | 105    | 1      |                 |                 |
| WCT     | 222    | 113    | 1      |                 |                 |
| WCT     | 273    | 204    | 1      |                 |                 |
| RBxWCT  | 131    | 23     | 1      |                 |                 |
| RBxWCT  | 160    | 40     | 1      |                 |                 |
| BULL    | 142    | 26     | 2      |                 | 985121026919070 |
| BULL    | 162    | 36     | 2      |                 | 985121026907670 |
| WCT     | 103    | 11     | 2      |                 |                 |
| WCT     | 105    | 11     | 2      |                 |                 |
| WCT     | 106    | 11     | 2      |                 |                 |
| WCT     | 109    | 13     | 2      |                 |                 |
| WCT     | 135    | 27     | 2      |                 |                 |
| WCT     | 228    | 145    | 2      |                 |                 |
| WCT     | 256    | 170    | 2      |                 |                 |
| WCT     | 305    | 290    | 2      |                 |                 |

## 2011 Fishtrap Creek Electrofishing Section 2-10 mile (below West Fork)

Sampling Date 8/26/2011

Water Temp. 7.5°C

Section length: 90 m; Average Section width: 6.9 m

Data Collectors: TT, RD, JS Latitude N.47.81452 Longitude W.115.13959 Electrofishing settings: Hz = 40; mS = 2; Volts = 300; Conductivity = 211Duration  $1^{st}$  Pass = 1,810; Duration  $2^{nd}$  Pass = 1,525; Duration  $3^{rd}$  Pass = 1,056; Duration  $4^{th}$ 

Pass = 1,053

Tailed frogs: Absent; Sculpin: Few

Table D-8. Data collection during 2011 electrofishing in Fishtrap Creek, Section 2-10 mile.

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|
| BULL    | 63     | 2      | 1      | _                 | _               |                 |
| BULL    | 142    | 23     | 1      |                   |                 | 985121026867570 |
| MWF     | 238    | 130    | 1      |                   |                 |                 |
| RB      | 273    | 208    | 1      |                   |                 |                 |
| WCT     | 83     | 5      | 1      |                   |                 |                 |
| WCT     | 99     | 9      | 1      |                   |                 |                 |
| WCT     | 99     | 8      | 1      |                   |                 |                 |
| WCT     | 99     | 8      | 1      |                   |                 |                 |
| WCT     | 103    | 10     | 1      |                   |                 |                 |
| WCT     | 108    | 12     | 1      |                   |                 |                 |
| WCT     | 113    | 15     | 1      |                   |                 |                 |
| WCT     | 125    | 20     | 1      |                   |                 |                 |
| WCT     | 125    | 19     | 1      |                   |                 |                 |
| WCT     | 129    | 23     | 1      |                   |                 |                 |
| WCT     | 134    | 23     | 1      |                   |                 |                 |
| WCT     | 160    | 39     | 1      |                   |                 |                 |
| WCT     | 163    | 43     | 1      |                   |                 |                 |
| WCT     | 193    | 80     | 1      |                   |                 |                 |
| WCT     | 198    | 74     | 1      |                   |                 |                 |
| WCT     | 240    | 139    | 1      |                   |                 |                 |
| WCT     | 283    | 240    | 1      |                   |                 |                 |
| WCT     | 333    | 382    | 1      |                   |                 |                 |
| BULL    | 66     | 2      | 2      |                   |                 |                 |
| BULL    | 115    | 10     | 2      |                   |                 | 985121026831077 |
| BULL    | 190    | 54     | 2      |                   | 70              | 985121026841459 |
| MWF     | 150    | 32     | 2      |                   |                 |                 |
| WCT     | 90     | 6      | 2      |                   |                 |                 |
| WCT     | 94     | 8      | 2      |                   |                 |                 |
| WCT     | 101    | 9      | 2      |                   |                 |                 |
| WCT     | 111    | 13     | 2      |                   |                 |                 |
| WCT     | 125    | 17     | 2      |                   |                 |                 |
| WCT     | 136    | 26     | 2      |                   |                 |                 |
| WCT     | 155    | 40     | 2      |                   |                 |                 |
| WCT     | 166    | 48     | 2      |                   |                 |                 |
| WCT     | 178    | 53     | 2      |                   |                 |                 |
| WCT     | 180    | 62     | 2      |                   |                 |                 |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|
| WCT     | 185    | 66     | 2      |                   | -               |                 |
| WCT     | 186    | 77     | 2      |                   |                 |                 |
| WCT     | 190    | 73     | 2      |                   |                 |                 |
| WCT     | 218    | 108    | 2      |                   |                 |                 |
| WCT     | 245    | 164    | 2      |                   |                 |                 |
| WCT     | 251    | 178    | 2      |                   |                 |                 |
| WCT     | 265    | 190    | 2      |                   |                 |                 |
| BULL    | 65     | 2      | 3      |                   |                 |                 |
| BULL    | 121    | 15     | 3      |                   |                 | 985121026942304 |
| BULL    | 123    | 14     | 3      |                   |                 | 985121026834130 |
| BULL    | 189    | 55     | 3      |                   | 72              | 985121026934177 |
| BULL    | 194    | 60     | 3      |                   | 73              | 985121026840737 |
| BULL    | 200    | 69     | 3      |                   | 71              | 985121026913092 |
| MWF     | 375    | 534    | 3      |                   |                 |                 |
| WCT     | 110    | 12     | 3      |                   |                 |                 |
| WCT     | 131    | 24     | 3      |                   |                 |                 |
| WCT     | 155    | 41     | 3      |                   |                 |                 |
| WCT     | 177    | 59     | 3      |                   |                 |                 |
| WCT     | 212    | 102    | 3      |                   |                 |                 |
| WCT     | 266    | 201    | 3      |                   |                 |                 |
| BULL    | 122    | 15     | 4      |                   |                 | 985121026939546 |
| BULL    | 138    | 23     | 4      |                   |                 | 985121026842008 |
| BULL    | 147    | 30     | 4      |                   |                 | 985121026844042 |
| WCT     | 95     | 8      | 4      |                   |                 |                 |
| WCT     | 96     | 8      | 4      |                   |                 |                 |
| WCT     | 108    | 12     | 4      |                   |                 |                 |
| WCT     | 111    | 12     | 4      |                   |                 |                 |
| WCT     | 120    | 15     | 4      |                   |                 |                 |
| WCT     | 120    | 17     | 4      |                   |                 |                 |
| WCT     | 138    | 25     | 4      |                   |                 |                 |
| WCT     | 143    | 29     | 4      |                   |                 |                 |
| WCT     | 163    | 47     | 4      |                   |                 |                 |
| WCT     | 203    | 88     | 4      |                   |                 |                 |
| WCT     | 231    | 123    | 4      |                   |                 |                 |

## 2011 Fishtrap Creek Electrofishing Section 1 (Lower) of West Fork Fishtrap Creek

Sampling Date 8/2/2011

Water Temp. 8°C

Section length: 85 m; Average Section width: 6.6 m

Data Collectors: TT, RD, EF Latitude N.47.80459 Longitude W.115.17329 Electrofishing settings: Hz = 50; mS = 2; Volts = 500; Conductivity = 71

Duration  $1^{st}$  Pass = 4,664; Duration  $2^{nd}$  Pass = 2,186

Tailed frogs: Common; Sculpin: Absent

Table D-9. Data collection during 2011 electrofishing in West Fork Fishtrap Creek,

Section 1 (Lower).

| Species     |        | Wo:abt | Doco # | Genetic | Scale  | DIT Tog No      |
|-------------|--------|--------|--------|---------|--------|-----------------|
| Species     | Length | Weight | Pass # | Sample  | Sample | PIT Tag No.     |
| BULL        | 86     | 5      | 1      |         | 46     | 985121026907298 |
| BULL        | 91     | 7      | 1      |         | 45     | 985121026942083 |
| BULL        | 95     | 7      | 1      |         | 47     | 985121026917494 |
| BULL        | 96     | 6      | 1      | 1743-80 | 42     | 985121026855575 |
| BULL        | 97     | 8      | 1      | 1743-81 | 43     | 985121026981052 |
| BULL        | 137    | 22     | 1      | 1743-85 |        | 985121026829605 |
| BULL        | 146    | 30     | 1      | 1743-84 |        | 985121026913310 |
| BULL        | 149    | 27     | 1      | 1743-83 |        | 985121026901586 |
| BULL        | 153    | 28     | 1      | 1743-82 | 44     | 985121026837192 |
| BULL        | 155    | 30     | 1      | 1743-78 | 40     | 985121026957744 |
| BULL        | 160    | 37     | 1      | 1743-77 | 39     | 985121026943369 |
| BULL        | 160    | 36     | 1      | 1743-79 | 41     | 985121026859021 |
| BULL        | 219    | 92     | 1      | 1743-76 | 38     | 985121026847145 |
| BULL        | 300    | 275    | 1      | 1743-75 | 37     | 985121026907315 |
| WCT         | 51     | 0      | 1      |         |        |                 |
| WCT         |        |        |        |         |        |                 |
| (mortality) | 55     | 1      | 1      |         |        |                 |
| WCT         | 60     | 2      | 1      |         |        |                 |
| WCT         | 62     | 2      | 1      |         |        |                 |
| WCT         |        |        |        |         |        |                 |
| (mortality) | 65     | 2      | 1      |         |        |                 |
| WCT         | 65     | 3      | 1      |         |        |                 |
| WCT         | 72     | 4      | 1      |         |        |                 |
| WCT         | 75     | 4      | 1      |         |        |                 |
| WCT         | 98     | 8      | 1      |         |        |                 |
| WCT         | 102    | 10     | 1      |         |        |                 |
| WCT         | 111    | 13     | 1      |         |        |                 |
| WCT         | 117    | 16     | 1      |         |        |                 |
| WCT         | 125    | 19     | 1      |         |        |                 |
| WCT         | 133    | 21     | 1      |         |        |                 |
| WCT         | 135    | 24     | 1      |         |        |                 |
| WCT         | 137    | 25     | 1      |         |        |                 |
| WCT         | 145    | 29     | 1      |         |        |                 |
| WCT         | 151    | 30     | 1      |         |        |                 |
| WCT         | 160    | 40     | 1      |         |        |                 |
| WCT         | 170    | 52     | 1      |         |        |                 |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No. |
|---------|--------|--------|--------|-------------------|-----------------|-------------|
| WCT     | 172    | 54     | 1      |                   |                 |             |
| WCT     | 175    | 60     | 1      |                   |                 |             |
| WCT     | 182    | 64     | 1      |                   |                 |             |
| WCT     | 202    | 92     | 1      |                   |                 |             |
| WCT     | 204    | 93     | 1      |                   |                 |             |
| WCT     | 216    | 97     | 1      |                   |                 |             |
| WCT     | 216    | 104    | 1      |                   |                 |             |
| WCT     | 239    | 143    | 1      |                   |                 |             |
| WCT     | 105    | 12     | 2      |                   |                 |             |
| WCT     | 154    | 40     | 2      |                   |                 |             |
| WCT     | 178    | 62     | 2      |                   |                 |             |
| WCT     | 239    | 154    | 2      |                   |                 |             |

# 2011 Fishtrap Creek Electrofishing Section 2 (at old bridge) of West Fork Fishtrap Creek

Sampling Date 8/3/2011 Water Temp. 8.5°C

Section length: 100 m; Average Section width: 5.8 m

Data Collectors: TT, RD, EF Latitude N.47.7994 Longitude W.115.20355 Electrofishing settings: Hz = 50; mS = 2; Volts = 600; Conductivity = 69

Duration  $1^{st}$  Pass = 4,349; Duration  $2^{nd}$  Pass = 2,218

Tailed frogs: Abundant; Sculpin: Absent

Table D-10. Data collection during 2011 electrofishing in West Fork Fishtrap Creek, Section 2.

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     | Comments  |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|-----------|
| BULL    | 81     | 5      | 1      |                   |                 | 985121026832257 |           |
| BULL    | 88     | 5      | 1      |                   |                 |                 | Mortality |
| BULL    | 88     | 6      | 1      |                   | 52              | 985121026957735 |           |
| BULL    | 88     | 6      | 1      |                   |                 | 985121026895902 |           |
| BULL    | 89     | 6      | 1      |                   | 53              | 985121026856767 |           |
| BULL    | 90     | 6      | 1      |                   |                 |                 | Mortality |
| BULL    | 90     | 7      | 1      |                   |                 | 985121026919774 |           |
| BULL    | 91     | 8      | 1      |                   |                 | 985121026914132 |           |
| BULL    | 92     | 7      | 1      |                   |                 | 985121026912383 |           |
| BULL    | 93     | 7      | 1      | 1743-90           |                 | 985121026919220 |           |
| BULL    | 93     | 7      | 1      |                   |                 | 985121026872011 |           |
| BULL    | 95     | 6      | 1      |                   |                 | 985121026966020 |           |
| BULL    | 95     | 7      | 1      |                   |                 | 985121026834988 |           |
| BULL    | 96     | 8      | 1      |                   |                 | 985121026922810 |           |
| BULL    | 96     | 7      | 1      |                   |                 | 985121026886959 |           |
| BULL    | 97     | 8      | 1      |                   |                 | 985121026831326 |           |
| BULL    | 97     | 8      | 1      |                   |                 | 985121026977952 |           |
| BULL    | 98     | 8      | 1      |                   |                 | 985121026840369 |           |
| BULL    | 98     | 8      | 1      |                   |                 | 985121026921599 |           |
| BULL    | 99     | 10     | 1      |                   |                 | 985121026929605 |           |
| BULL    | 100    | 10     | 1      |                   |                 | 985121026919213 |           |
| BULL    | 103    | 9      | 1      |                   |                 | 985121026981053 |           |
| BULL    | 105    | 11     | 1      |                   |                 | 985121026927557 |           |
| BULL    | 105    | 10     | 1      |                   |                 | 985121026831413 |           |
| BULL    | 127    | 16     | 1      |                   |                 | 985121026914549 |           |
| BULL    | 129    | 18     | 1      |                   |                 | 985121026959182 |           |
| BULL    | 144    | 26     | 1      | 1743-96           |                 | 985121026867128 |           |
| BULL    | 151    | 28     | 1      |                   |                 | 985121026867074 |           |
| BULL    | 155    | 30     | 1      | 1743-97           | 51              | 985121026925739 |           |
| BULL    | 162    | 43     | 1      | 1743-91           | 48              | 985121026849737 |           |
| BULL    | 199    | 71     | 1      | 1743-94           | 50              | 985121026912870 |           |
| BULL    | 284    | 220    | 1      | 1743-93           | 49              | 985121026939728 |           |
| WCT     | 50     | 0      | 1      |                   |                 |                 |           |
| WCT     | 57     | 1      | 1      |                   |                 |                 |           |
| WCT     | 58     | 1      | 1      |                   |                 |                 |           |
| WCT     | 61     | 2      | 1      |                   |                 |                 |           |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No. | Comments  |
|---------|--------|--------|--------|-------------------|-----------------|-------------|-----------|
| WCT     | 61     | 2      | 1      |                   |                 |             |           |
| WCT     | 61     | 1      | 1      |                   |                 |             |           |
| WCT     | 62     | 1      | 1      |                   |                 |             | Mortality |
| WCT     | 64     | 2      | 1      |                   |                 |             |           |
| WCT     | 65     | 2      | 1      |                   |                 |             | Mortality |
| WCT     | 65     | 2      | 1      |                   |                 |             |           |
| WCT     | 66     | 2      | 1      |                   |                 |             |           |
| WCT     | 68     | 3      | 1      |                   |                 |             |           |
| WCT     | 70     | 3      | 1      |                   |                 |             |           |
| WCT     | 70     | 3      | 1      |                   |                 |             |           |
| WCT     | 70     | 3      | 1      |                   |                 |             |           |
| WCT     | 71     | 3      | 1      |                   |                 |             |           |
| WCT     | 71     | 3      | 1      |                   |                 |             |           |
| WCT     | 72     | 3      | 1      |                   |                 |             | Mortality |
| WCT     | 72     | 3      | 1      |                   |                 |             | Mortality |
| WCT     | 73     | 4      | 1      |                   |                 |             | Mortality |
| WCT     | 77     | 4      | 1      |                   |                 |             |           |
| WCT     | 91     | 7      | 1      |                   |                 |             | Mortality |
| WCT     | 96     | 8      | 1      |                   |                 |             |           |
| WCT     | 98     | 9      | 1      |                   |                 |             |           |
| WCT     | 104    | 11     | 1      |                   |                 |             |           |
| WCT     | 104    | 12     | 1      |                   |                 |             |           |
| WCT     | 105    | 10     | 1      |                   |                 |             |           |
| WCT     | 106    | 11     | 1      |                   |                 |             | Mortality |
| WCT     | 106    | 11     | 1      |                   |                 |             |           |
| WCT     | 106    | 11     | 1      |                   |                 |             |           |
| WCT     | 114    | 15     | 1      |                   |                 |             |           |
| WCT     | 116    | 16     | 1      |                   |                 |             |           |
| WCT     | 116    | 15     | 1      |                   |                 |             |           |
| WCT     | 125    | 17     | 1      |                   |                 |             |           |
| WCT     | 131    | 22     | 1      |                   |                 |             |           |
| WCT     | 133    | 23     | 1      |                   |                 |             |           |
| WCT     | 140    | 29     | 1      |                   |                 |             |           |
| WCT     | 141    | 28     | 1      |                   |                 |             |           |
| WCT     | 144    | 27     | 1      |                   |                 |             |           |
| WCT     | 158    | 39     | 1      |                   |                 |             |           |
| WCT     | 161    | 45     | 1      |                   |                 |             |           |
| WCT     | 164    | 45     | 1      |                   |                 |             |           |
| WCT     | 164    | 44     | 1      |                   |                 |             |           |
| WCT     | 166    | 50     | 1      |                   |                 |             |           |
| WCT     | 167    | 44     | 1      |                   |                 |             |           |
| WCT     | 181    | 61     | 1      |                   |                 |             |           |
| WCT     | 196    | 75     | 1      |                   |                 |             |           |
| WCT     | 202    | 86     | 1      |                   |                 |             |           |
| WCT     | 205    | 94     | 1      |                   |                 |             |           |
| WCT     | 207    | 83     | 1      |                   |                 |             |           |
| WCT     | 210    | 88     | 1      |                   |                 |             |           |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     | Comments |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|----------|
| WCT     | 212    | 97     | 1      |                   |                 |                 |          |
| WCT     | 223    | 117    | 1      |                   |                 |                 |          |
| WCT     | 223    | 110    | 1      |                   |                 |                 |          |
| WCT     | 245    | 135    | 1      |                   |                 |                 |          |
| WCT     | 245    | 125    | 1      |                   |                 |                 |          |
| BULL    | 95     | 7      | 2      | 1743-87           |                 | 985121026916641 |          |
| BULL    | 96     | 8      | 2      | 1743-86           |                 | 985121026923327 |          |
| BULL    | 144    | 30     | 2      | 1743-88           |                 | 985121026919367 |          |
| BULL    | 146    | 28     | 2      | 1743-89           |                 | 985121026829748 |          |
| WCT     | 50     | 0      | 2      |                   |                 |                 |          |
| WCT     | 52     | 1      | 2      |                   |                 |                 |          |
| WCT     | 57     | 1      | 2      |                   |                 |                 |          |
| WCT     | 63     | 2      | 2      |                   |                 |                 |          |
| WCT     | 64     | 2      | 2      |                   |                 |                 |          |
| WCT     | 68     | 2      | 2      |                   |                 |                 |          |
| WCT     | 72     | 3      | 2      |                   |                 |                 |          |
| WCT     | 213    | 95     | 2      |                   |                 |                 |          |

# 2011 Fishtrap Creek Electrofishing Section 3 of West Fork Fishtrap Creek

Sampling Date 8/5/2011 Water Temp. 8.5°C

Section length: 99 m; Average Section width: 5.0 m

Data Collectors: TT, RD, EF Latitude N.47.78462 Longitude W.115.22861 Electrofishing settings: Hz = 50; mS = 2; Volts = 700; Conductivity = 50 Duration 1<sup>st</sup> Pass = 2,375; Duration 2<sup>nd</sup> Pass = 1,352

Tailed frogs: Abundant; Sculpin: Absent

Table D-11. Data collection during 2011 electrofishing in West Fork Fishtrap Creek, Section 3.

| Species | Length | Weight | Pass # | Genetic | Scale  | PIT Tag No.     |
|---------|--------|--------|--------|---------|--------|-----------------|
| -       |        |        |        | Sample  | Sample |                 |
| BULL    | 132    | 20     | 1      |         |        | 985121026895582 |
| BULL    | 141    | 24     | 1      |         |        | 985121026977983 |
| BULL    | 158    | 36     | 1      |         |        | 985121026902247 |
| BULL    | 162    | 35     | 1      |         |        | 985121026905144 |
| BULL    | 166    | 38     | 1      |         |        | 985121026898602 |
| BULL    | 166    | 40     | 1      |         |        | 985121026926773 |
| BULL    | 169    | 39     | 1      |         |        | 985121026910660 |
| BULL    | 180    | 50     | 1      | 57      |        | 985121026949322 |
| WCT     | 50     | 0      | 1      |         |        |                 |
| WCT     | 55     | 0      | 1      |         |        |                 |
| WCT     | 56     | 1      | 1      |         |        |                 |
| WCT     | 62     | 2      | 1      |         |        |                 |
| WCT     | 65     | 2      | 1      |         |        |                 |
| WCT     | 71     | 3      | 1      |         |        |                 |
| WCT     | 78     | 5      | 1      |         |        |                 |
| WCT     | 85     | 6      | 1      |         |        |                 |
| WCT     | 90     | 6      | 1      |         |        |                 |
| WCT     | 90     | 7      | 1      |         |        |                 |
| WCT     | 92     | 7      | 1      |         |        |                 |
| WCT     | 105    | 10     | 1      |         |        |                 |
| WCT     | 105    | 11     | 1      |         |        |                 |
| WCT     | 106    | 11     | 1      |         |        |                 |
| WCT     | 107    | 13     | 1      |         |        |                 |
| WCT     | 108    | 12     | 1      |         |        |                 |
| WCT     | 108    | 12     | 1      |         |        |                 |
| WCT     | 116    | 15     | 1      |         |        |                 |
| WCT     | 118    | 15     | 1      |         |        |                 |
| WCT     | 121    | 16     | 1      |         |        |                 |
| WCT     | 128    | 24     | 1      |         |        |                 |
| WCT     | 128    | 23     | 1      |         |        |                 |
| WCT     | 132    | 25     | 1      |         |        |                 |
| WCT     | 135    | 24     | 1      |         |        |                 |
| WCT     | 135    | 25     | 1      |         |        |                 |
| WCT     | 139    | 25     | 1      |         |        |                 |
| WCT     | 141    | 30     | 1      |         |        |                 |
| WCT     | 148    | 33     | 1      |         |        |                 |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|
| WCT     | 150    | 36     | 1      |                   |                 |                 |
| WCT     | 151    | 44     | 1      |                   |                 |                 |
| WCT     | 152    | 36     | 1      |                   |                 |                 |
| WCT     | 153    | 31     | 1      |                   |                 |                 |
| WCT     | 155    | 38     | 1      |                   |                 |                 |
| WCT     | 169    | 49     | 1      |                   |                 |                 |
| WCT     | 169    | 49     | 1      |                   |                 |                 |
| WCT     | 180    | 63     | 1      |                   |                 |                 |
| WCT     | 186    | 65     | 1      |                   |                 |                 |
| WCT     | 198    | 80     | 1      |                   |                 |                 |
| WCT     | 220    | 104    | 1      |                   |                 |                 |
| BULL    | 160    | 34     | 2      |                   | 56              | 985121026889935 |
| WCT     | 56     | 1      | 2      |                   |                 |                 |
| WCT     | 96     | 9      | 2      |                   |                 |                 |

## 2011 Fishtrap Creek Electrofishing Section 1 of Beatrice Creek

Sampling Date 7/26/2011

Water Temp. 6.8°C

Section length: 113 m; Average Section width: 5.5 m

Data Collectors: JS, HC, TB Latitude N.47.78964 Longitude W.115.11755

Conductivity = 116

Duration  $1^{st}$  Pass = 4,720; Duration  $2^{nd}$  Pass = 3,355; Duration  $3^{rd}$  Pass = 2,999

Tailed frogs: Common; Sculpin: Absent

Table D-12. Data collection during 2011 electrofishing in Beatrice Creek, Section 1.

|         |        |        |        | Genetic  | Scale  | lifice Creek, Secur |          |
|---------|--------|--------|--------|----------|--------|---------------------|----------|
| Species | Length | Weight | Pass # | Sample   | Sample | PIT Tag No.         | Comments |
| BULL    | 70     | 3      | 1      |          |        |                     |          |
| BULL    | 73     | 3      | 1      |          |        |                     |          |
| BULL    | 75     | 4      | 1      |          |        |                     |          |
| BULL    | 76     | 4      | 1      |          |        |                     |          |
| BULL    | 80     | 4      | 1      |          |        |                     |          |
| BULL    | 80     | 4      | 1      |          |        |                     |          |
| BULL    | 80     | 4      | 1      |          |        |                     |          |
| BULL    | 80     | 5      | 1      |          |        |                     |          |
| BULL    | 82     | 5      | 1      |          |        |                     |          |
| BULL    | 82     | 5      | 1      |          |        |                     |          |
| BULL    | 82     | 5      | 1      |          |        |                     |          |
| BULL    | 83     | 5      | 1      |          |        |                     |          |
| BULL    | 83     | 5      | 1      |          |        |                     |          |
| BULL    | 85     | 5      | 1      |          |        |                     |          |
| BULL    | 85     | 5      | 1      |          |        |                     |          |
| BULL    | 86     | 5      | 1      |          |        |                     |          |
| BULL    | 86     | 6      | 1      |          |        |                     |          |
| BULL    | 86     | 5      | 1      |          |        |                     |          |
| BULL    | 86     | 5      | 1      |          |        |                     |          |
| BULL    | 87     | 6      | 1      |          |        |                     |          |
| BULL    | 87     | 6      | 1      |          |        |                     |          |
| BULL    | 88     | 6      | 1      |          |        |                     |          |
| BULL    | 90     | 6      | 1      |          |        |                     |          |
| BULL    | 90     | 6      | 1      |          |        |                     |          |
| BULL    | 91     | 7      | 1      |          |        |                     |          |
| BULL    | 91     | 6      | 1      |          |        |                     |          |
| BULL    | 94     | 7      | 1      |          |        |                     |          |
| BULL    | 94     | 7      | 1      |          |        |                     |          |
| BULL    | 102    | 9      | 1      |          |        |                     |          |
| BULL    | 103    | 9      | 1      |          |        |                     |          |
| BULL    | 117    | 14     | 1      |          |        |                     |          |
| BULL    | 120    | 15     | 1      | 1972-026 | 25     | 985121021881878     |          |
| BULL    | 120    | 15     | 1      |          |        |                     |          |
| BULL    | 122    | 15     | 1      | 1972-036 | 34     | 985121021918197     |          |
| BULL    | 124    | 17     | 1      | 1972-027 | 26     | 985121021890260     |          |
| BULL    | 125    | 17     | 1      | 1972-040 | 36A    | 985121021898161     |          |
| BULL    | 128    | 18     | 1      | 1972-031 | 29     | 985121021871250     |          |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     | Comments  |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|-----------|
| BULL    | 130    | 22     | 1      | 1972-039          | 36              | 985121021914132 |           |
| BULL    | 131    | 23     | 1      | 1972-028          | 27              | 985121021914485 |           |
| BULL    | 131    | 23     | 1      | 1972-030          | 28              | 985121021918349 |           |
| BULL    | 131    | 19     | 1      | 1972-033          | 31              | 985121021909647 |           |
| BULL    | 131    | 19     | 1      | 1972-041          |                 | 985121021899233 |           |
| BULL    | 132    | 20     | 1      | 1972-037          | 35              | 985121023469632 |           |
| BULL    | 135    | 21     | 1      | 1972-035          | 33              | 985121021882975 |           |
| BULL    | 137    | 22     | 1      | 1972-034          | 32              | 985121021874359 |           |
| BULL    | 141    | 24     | 1      | 1972-043          |                 | 985121021887518 |           |
| BULL    | 145    | 27     | 1      | 1972-042          |                 | 985121021912182 |           |
| BULL    | 148    | 29     | 1      | 1972-038          |                 | 985121021900383 |           |
| BULL    | 150    | 29     | 1      | 1972-029          | 27A             | 985121021890440 |           |
| BULL    | 153    | 33     | 1      | 1972-044          | 37              | 985121021918454 |           |
| BULL    | 156    | 32     | 1      | 1972-032          | 30              | 985121021871515 |           |
| WCT     | 75     | 3      | 1      |                   |                 |                 |           |
| WCT     | 80     | 4      | 1      |                   |                 |                 |           |
| WCT     | 82     | 5      | 1      |                   |                 |                 |           |
| WCT     | 86     | 7      | 1      |                   |                 |                 |           |
| WCT     | 87     | 7      | 1      |                   |                 |                 | Mortality |
| WCT     | 87     | 7      | 1      |                   |                 |                 |           |
| WCT     | 90     | 7      | 1      |                   |                 |                 |           |
| WCT     | 90     | 7      | 1      |                   |                 |                 |           |
| WCT     | 95     | 8      | 1      |                   |                 |                 | Mortality |
| WCT     | 100    | 10     | 1      |                   |                 |                 | ,         |
| WCT     | 103    | 11     | 1      |                   |                 |                 |           |
| WCT     | 105    | 11     | 1      |                   |                 |                 |           |
| WCT     | 110    | 15     | 1      |                   |                 |                 |           |
| WCT     | 112    | 14     | 1      |                   |                 |                 |           |
| WCT     | 112    | 14     | 1      |                   |                 |                 |           |
| WCT     | 112    | 32     | 1      |                   |                 |                 |           |
| WCT     | 114    | 10     | 1      |                   |                 |                 |           |
| WCT     | 130    | 23     | 1      |                   |                 |                 |           |
| WCT     | 137    | 24     | 1      |                   |                 |                 |           |
| WCT     | 140    | 30     | 1      |                   |                 |                 |           |
| WCT     | 146    | 36     | 1      |                   |                 |                 |           |
| WCT     | 168    | 50     | 1      |                   |                 |                 |           |
| WCT     | 173    | 60     | 1      |                   |                 |                 |           |
| WCT     | 178    | 58     | 1      |                   |                 |                 |           |
| WCT     | 190    | 69     | 1      |                   |                 |                 |           |
| WCT     | 195    | 82     | 1      |                   |                 |                 |           |
| WCT     | 200    | 78     | 1      |                   |                 |                 |           |
| WCT     | 210    | 100    | 1      |                   |                 |                 |           |
| WCT     | 216    | 106    | 1      |                   |                 |                 |           |
| WCT     | 216    | 114    | 1      |                   |                 |                 |           |
| WCT     | 228    | 138    | 1      |                   |                 |                 |           |
| WCT     | 230    | 133    | 1      |                   |                 |                 |           |
| WCT     | 253    | 176    | 1      |                   |                 |                 |           |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     | Comments |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|----------|
| WCT     | 278    | 235    | 1      |                   | _               |                 |          |
| BULL    | 68     | 3      | 2      |                   |                 |                 |          |
| BULL    | 74     | 3      | 2      |                   |                 |                 |          |
| BULL    | 75     | 3      | 2      |                   |                 |                 |          |
| BULL    | 80     | 5      | 2      |                   |                 |                 |          |
| BULL    | 80     | 5      | 2      |                   |                 |                 |          |
| BULL    | 80     | 4      | 2      |                   |                 |                 |          |
| BULL    | 80     | 4      | 2      |                   |                 |                 |          |
| BULL    | 87     | 6      | 2      | 1972-023          | 23              |                 |          |
| BULL    | 90     | 6      | 2      |                   |                 |                 |          |
| BULL    | 91     | 7      | 2      | 1972-024          |                 |                 |          |
| BULL    | 91     | 6      | 2      |                   |                 |                 |          |
| BULL    | 92     | 6      | 2      |                   |                 |                 |          |
| BULL    | 93     | 7      | 2      |                   |                 |                 |          |
| BULL    | 105    | 10     | 2      | 1972-022          | 22              |                 |          |
| BULL    | 120    | 17     | 2      | 1972-021          | 21              | 985121023298173 |          |
| BULL    | 130    | 21     | 2      | 1972-020          | 20              | 985121021918200 |          |
| BULL    | 145    | 26     | 2      | 1972-019          | 19              | 985121021914284 |          |
| BULL    | 181    | 21     | 2      | 1972-018          | 18              | 985121021882243 |          |
| BULL    | 181    | 21     | 2      | 1972-025          | 24              | 985121021896116 |          |
| WCT     | 61     | 2      | 2      |                   |                 |                 |          |
| WCT     | 88     | 6      | 2      |                   |                 |                 |          |
| WCT     | 91     | 8      | 2      |                   |                 |                 |          |
| WCT     | 91     | 7      | 2      |                   |                 |                 |          |
| WCT     | 97     | 10     | 2      |                   |                 |                 |          |
| WCT     | 143    | 32     | 2      |                   |                 |                 |          |
| WCT     | 180    | 68     | 2      |                   |                 |                 |          |
| BULL    | 82     | 7      | 3      |                   |                 |                 |          |
| BULL    | 82     | 5      | 3      |                   |                 |                 |          |
| BULL    | 85     | 7      | 3      |                   |                 |                 |          |
| BULL    | 85     | 5      | 3      |                   |                 |                 |          |
| BULL    | 85     | 5      | 3      |                   |                 |                 |          |
| BULL    | 90     | 7      | 3      |                   |                 |                 |          |
| BULL    | 92     | 7      | 3      |                   |                 |                 |          |
| BULL    | 95     | 8      | 3      |                   |                 |                 |          |
| BULL    | 123    | 17     | 3      | 1972-045          |                 | 985121021869209 |          |
| WCT     | 88     | 5      | 3      |                   |                 |                 |          |
| WCT     | 210    | 100    | 3      |                   |                 |                 |          |

## 2011 Fishtrap Creek Electrofishing Section 2 of Beatrice Creek

Sampling Date 7/25/2011

Water Temp. 6.5°C

Section length: 100 m; Average Section width: 4.5 m

Data Collectors: JS, HC, TB, BS Latitude N.47.7763 Longitude W.115.14899

Conductivity = 78

Duration  $1^{st}$  Pass = 8,100; Duration  $2^{nd}$  Pass = 3,024

Tailed frogs: Few; Sculpin: Few

Table D-13. Data collection during 2011 electrofishing in Beatrice Creek, Section 2.

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|
| BULL    | 144    | 25     | 1      | 1972-008          | 8               | 985121021893986 |
| BULL    | 147    | 25     | 1      | 1972-007          | 7               | 985121023471026 |
| BULL    | 148    | 26     | 1      | 1972-010          | 10              | 985121021914488 |
| BULL    | 148    | 27     | 1      | 1972-011          | 11              | 985121021894959 |
| BULL    | 149    | 26     | 1      | 1972-004          | 4               | 985121021877993 |
| BULL    | 150    | 29     | 1      | 1972-005          | 5               | 985121021911967 |
| BULL    | 163    | 35     | 1      | 1972-006          | 6               | 985121023381056 |
| BULL    | 164    | 34     | 1      | 1972-009          | 9               | 985121023471026 |
| BULL    | 165    | 38     | 1      | 1972-001          | 1               | 985121021912233 |
| BULL    | 166    | 42     | 1      | 1972-014          | 14              | 985121021899134 |
| BULL    | 171    | 40     | 1      | 1972-002          | 2               | 985121023471208 |
| BULL    | 174    | 43     | 1      | 1972-003          | 3               | 985121021869293 |
| BULL    | 178    | 44     | 1      | 1972-015          | 15              | 985121023463669 |
| BULL    | 182    | 50     | 1      | 1972-013          | 13              | 985121021870161 |
| BULL    | 234    | 105    | 1      | 1972-012          | 12              | 985121021881925 |
| WCT     | 81     | 6      | 1      |                   |                 |                 |
| WCT     | 89     | 7      | 1      |                   |                 |                 |
| WCT     | 90     | 6      | 1      |                   |                 |                 |
| WCT     | 92     | 6      | 1      |                   |                 |                 |
| WCT     | 107    | 12     | 1      |                   |                 |                 |
| WCT     | 110    | 14     | 1      |                   |                 |                 |
| WCT     | 115    | 16     | 1      |                   |                 |                 |
| WCT     | 119    | 18     | 1      |                   |                 |                 |
| WCT     | 123    | 18     | 1      |                   |                 |                 |
| WCT     | 128    | 22     | 1      |                   |                 |                 |
| WCT     | 135    | 22     | 1      |                   |                 |                 |
| WCT     | 138    | 25     | 1      |                   |                 |                 |
| WCT     | 138    | 26     | 1      |                   |                 |                 |
| WCT     | 138    | 25     | 1      |                   |                 |                 |
| WCT     | 146    | 25     | 1      |                   |                 |                 |
| WCT     | 156    | 34     | 1      |                   |                 |                 |
| WCT     | 159    | 37     | 1      |                   |                 |                 |
| WCT     | 162    | 41     | 1      |                   |                 |                 |
| WCT     | 164    | 40     | 1      |                   |                 |                 |
| WCT     | 165    | 48     | 1      |                   |                 |                 |
| WCT     | 169    | 49     | 1      |                   |                 |                 |
| WCT     | 173    | 50     | 1      |                   |                 |                 |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|
| WCT     | 175    | 54     | 1      |                   |                 |                 |
| WCT     | 187    | 59     | 1      |                   |                 |                 |
| WCT     | 194    | 67     | 1      |                   |                 |                 |
| WCT     | 199    | 87     | 1      |                   |                 |                 |
| WCT     | 199    | 76     | 1      |                   |                 |                 |
| WCT     | 205    | 90     | 1      |                   |                 |                 |
| WCT     | 207    | 87     | 1      |                   |                 |                 |
| WCT     | 225    | 90     | 1      |                   |                 |                 |
| WCT     | 242    | 133    | 1      |                   |                 |                 |
| BULL    | 167    | 37     | 2      | 1972-017          | 17              | 985121021903298 |
| BULL    | 300    | 298    | 2      | 1972-016          | 16              | 985121021918193 |
| WCT     | 59     | 1      | 2      |                   |                 |                 |

## 2011 Fishtrap Creek Electrofishing Section 1 of Jungle Creek

Sampling Date 7/28/2011

Water Temp. 6.4°C

Section length: 100 m; Average Section width: 4.1 m

Data Collectors: JS, HC, TB Latitude N.47.73388 Longitude W.115.07779 Electrofishing settings: Hz = 40; mS = 2; Volts = 800; Conductivity = 132

Duration  $1^{st}$  Pass = 4,770; Duration  $2^{nd}$  Pass = 2,470

Tailed frogs: Common; Sculpin: Absent

Table D-14. Data collection during 2011 electrofishing in Jungle Creek, Section 1.

| Table D-1 | Table D-14. Data collection during 2011 |        |        | electronshing in Jungle Creek, Section 1. |                 |                 |           |  |
|-----------|-----------------------------------------|--------|--------|-------------------------------------------|-----------------|-----------------|-----------|--|
| Species   | Length                                  | Weight | Pass # | Genetic<br>Sample                         | Scale<br>Sample | PIT Tag No.     | Comments  |  |
| BULL      | 137                                     | 21     | 1      | 1972-053                                  | 8               | 985121021918455 |           |  |
| BULL      | 181                                     | 44     | 1      | 1972-052                                  | 7               | 985121021914214 |           |  |
| WCT       | 57                                      | 1      | 1      |                                           |                 |                 |           |  |
| WCT       | 65                                      | 2      | 1      |                                           |                 |                 |           |  |
| WCT       | 67                                      | 3      | 1      |                                           |                 |                 |           |  |
| WCT       | 68                                      | 3      | 1      |                                           |                 |                 |           |  |
| WCT       | 85                                      | 5      | 1      |                                           |                 |                 |           |  |
| WCT       | 87                                      | 7      | 1      |                                           |                 |                 |           |  |
| WCT       | 90                                      | 7      | 1      |                                           |                 |                 |           |  |
| WCT       | 93                                      | 8      | 1      |                                           |                 |                 |           |  |
| WCT       | 99                                      | 9      | 1      |                                           |                 |                 |           |  |
| WCT       | 103                                     | 9      | 1      |                                           |                 |                 |           |  |
| WCT       | 119                                     | 16     | 1      |                                           |                 |                 |           |  |
| WCT       | 126                                     | 19     | 1      |                                           |                 |                 |           |  |
| WCT       | 128                                     | 20     | 1      |                                           |                 |                 |           |  |
| WCT       | 136                                     | 26     | 1      |                                           |                 |                 |           |  |
| WCT       | 137                                     | 28     | 1      |                                           |                 |                 | Mortality |  |
| WCT       | 142                                     | 27     | 1      |                                           |                 |                 | -         |  |
| WCT       | 144                                     | 26     | 1      |                                           |                 |                 |           |  |
| WCT       | 147                                     | 34     | 1      |                                           |                 |                 |           |  |
| WCT       | 151                                     | 32     | 1      |                                           |                 |                 |           |  |
| WCT       | 151                                     | 34     | 1      |                                           |                 |                 |           |  |
| WCT       | 153                                     | 34     | 1      |                                           |                 |                 |           |  |
| WCT       | 154                                     | 32     | 1      |                                           |                 |                 |           |  |
| WCT       | 157                                     | 35     | 1      |                                           |                 |                 |           |  |
| WCT       | 158                                     | 36     | 1      |                                           |                 |                 |           |  |
| WCT       | 161                                     | 36     | 1      |                                           |                 |                 |           |  |
| WCT       | 162                                     | 45     | 1      |                                           |                 |                 |           |  |
| WCT       | 167                                     | 41     | 1      |                                           |                 |                 |           |  |
| WCT       | 170                                     | 48     | 1      |                                           |                 |                 | Mortality |  |
| WCT       | 170                                     | 45     | 1      |                                           |                 |                 |           |  |
| WCT       | 174                                     | 50     | 1      |                                           |                 |                 |           |  |
| WCT       | 175                                     | 52     | 1      |                                           |                 |                 |           |  |
| WCT       | 176                                     | 51     | 1      |                                           |                 |                 |           |  |
| WCT       | 177                                     | 46     | 1      |                                           |                 |                 |           |  |
| WCT       | 177                                     | 32     | 1      |                                           |                 |                 |           |  |
| WCT       | 183                                     | 67     | 1      |                                           |                 |                 |           |  |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     | Comments  |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|-----------|
| WCT     | 186    | 57     | 1      |                   | _               |                 |           |
| WCT     | 188    | 68     | 1      |                   |                 |                 |           |
| WCT     | 188    | 48     | 1      |                   |                 |                 |           |
| WCT     | 190    | 68     | 1      |                   |                 |                 |           |
| WCT     | 191    | 79     | 1      |                   |                 |                 |           |
| WCT     | 194    | 53     | 1      |                   |                 |                 |           |
| WCT     | 195    | 63     | 1      |                   |                 |                 |           |
| WCT     | 196    | 80     | 1      |                   |                 |                 |           |
| WCT     | 196    | 74     | 1      |                   |                 |                 |           |
| WCT     | 197    | 75     | 1      |                   |                 |                 |           |
| WCT     | 197    | 70     | 1      |                   |                 |                 |           |
| WCT     | 200    | 93     | 1      |                   |                 |                 |           |
| WCT     | 212    | 103    | 1      |                   |                 |                 |           |
| WCT     | 223    | 117    | 1      |                   |                 |                 |           |
| BULL    | 239    | 117    | 2      | 1972-054          | 9               | 985121021889359 |           |
| WCT     | 55     | 1      | 2      |                   |                 |                 |           |
| WCT     | 74     | 4      | 2      |                   | _               |                 |           |
| WCT     | 90     | 7      | 2      |                   |                 |                 |           |
| WCT     | 98     | 10     | 2      |                   |                 |                 | Mortality |
| WCT     | 145    | 29     | 2      |                   |                 |                 |           |

## 2011 Fishtrap Creek Electrofishing Section 2 of Jungle Creek

Sampling Date 9/27/2011

Water Temp. 6.1°C

Section length: 117 m; Average Section width: 4.0 m

Data Collectors: JS, HC, TB Latitude N.47.74043 Longitude W.115.12384 Electrofishing settings: Hz = 30; mS = 8; Volts = 800; Conductivity = 90

Duration  $1^{st}$  Pass = 4,488; Duration  $2^{nd}$  Pass = 2,003

Tailed frogs: Common; Sculpin: Absent

Table D-15. Data collection during 2011 electrofishing in Jungle Creek, Section 2.

| Species | Length | Weight | Pass # | Genetic                | Scale  | PIT Tag No.     | Comments  |
|---------|--------|--------|--------|------------------------|--------|-----------------|-----------|
| BULL    | 156    | 32     |        | <b>Sample</b> 1972-046 | Sample | 985121021842544 |           |
|         |        |        | 1      |                        | 1      |                 |           |
| BULL    | 172    | 44     | 1      | 1972-047               | 2      | 985121021920789 |           |
| BULL    | 179    | 48     | 1      | 1972-048               | 3      | 985121021881072 |           |
| BULL    | 185    | 58     | 1      | 1972-049               | 4      | 985121021891844 |           |
| BULL    | 187    | 56     | 1      | 1972-050               | 5      | 985121023367180 |           |
| WCT     | 50     | 1      | 1      |                        |        |                 |           |
| WCT     | 55     | 1      | 1      |                        |        |                 | Mortality |
| WCT     | 55     | 1      | 1      |                        |        |                 |           |
| WCT     | 56     | 1      | 1      |                        |        |                 |           |
| WCT     | 59     | 1      | 1      |                        |        |                 |           |
| WCT     | 78     | 4      | 1      |                        |        |                 |           |
| WCT     | 78     | 5      | 1      |                        |        |                 |           |
| WCT     | 83     | 6      | 1      |                        |        |                 |           |
| WCT     | 84     | 7      | 1      |                        |        |                 |           |
| WCT     | 84     | 8      | 1      |                        |        |                 |           |
| WCT     | 93     | 8      | 1      |                        |        |                 |           |
| WCT     | 93     | 9      | 1      |                        |        |                 |           |
| WCT     | 98     | 9      | 1      |                        |        |                 |           |
| WCT     | 104    | 10     | 1      |                        |        |                 |           |
| WCT     | 118    | 15     | 1      |                        |        |                 |           |
| WCT     | 124    | 17     | 1      |                        |        |                 |           |
| WCT     | 141    | 28     | 1      |                        |        |                 |           |
| WCT     | 141    | 27     | 1      |                        |        |                 |           |
| WCT     | 142    | 29     | 1      |                        |        |                 |           |
| WCT     | 145    | 31     | 1      |                        |        |                 |           |
| WCT     | 148    | 31     | 1      |                        |        |                 |           |
| WCT     | 149    | 32     | 1      |                        |        |                 |           |
| WCT     | 150    | 30     | 1      |                        |        |                 |           |
| WCT     | 153    | 38     | 1      |                        |        |                 |           |
| WCT     | 153    | 42     | 1      |                        |        |                 |           |
| WCT     | 154    | 39     | 1      |                        |        |                 |           |
| WCT     | 155    | 45     | 1      |                        |        |                 |           |
| WCT     | 157    | 40     | 1      |                        |        |                 |           |
| WCT     | 158    | 44     | 1      |                        |        |                 |           |
| WCT     | 159    | 43     | 1      |                        |        |                 |           |
| WCT     | 163    | 44     | 1      |                        |        |                 |           |
| WCT     | 165    | 51     | 1      |                        |        |                 |           |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     | Comments |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|----------|
| WCT     | 167    | 45     | 1      |                   | _               |                 |          |
| WCT     | 171    | 55     | 1      |                   |                 |                 |          |
| WCT     | 174    | 52     | 1      |                   |                 |                 |          |
| WCT     | 174    | 43     | 1      |                   |                 |                 |          |
| WCT     | 176    | 56     | 1      |                   |                 |                 |          |
| WCT     | 176    | 58     | 1      |                   |                 |                 |          |
| WCT     | 176    | 58     | 1      |                   |                 |                 |          |
| WCT     | 177    | 56     | 1      |                   |                 |                 |          |
| WCT     | 178    | 58     | 1      |                   |                 |                 |          |
| WCT     | 180    | 71     | 1      |                   |                 |                 |          |
| WCT     | 184    | 68     | 1      |                   |                 |                 |          |
| WCT     | 185    | 57     | 1      |                   |                 |                 |          |
| WCT     | 188    | 60     | 1      |                   |                 |                 |          |
| WCT     | 188    | 74     | 1      |                   |                 |                 |          |
| WCT     | 192    | 62     | 1      |                   |                 |                 |          |
| WCT     | 193    | 69     | 1      |                   |                 |                 |          |
| WCT     | 198    | 82     | 1      |                   |                 |                 |          |
| WCT     | 207    | 99     | 1      |                   |                 |                 |          |
| WCT     | 210    | 100    | 1      |                   |                 |                 |          |
| WCT     | 232    | 126    | 1      |                   |                 |                 |          |
| WCT     | 234    | 106    | 1      |                   |                 |                 |          |
| WCT     | 240    | 110    | 1      |                   |                 |                 |          |
| WCT     | 248    | 148    | 1      |                   |                 |                 |          |
| BULL    | 174    | 46     | 2      | 1972-051          | 6               | 985121021893350 |          |
| WCT     | 83     | 5      | 2      |                   |                 |                 |          |
| WCT     | 159    | 46     | 2      |                   |                 |                 |          |
| WCT     | 160    | 43     | 2      |                   |                 |                 |          |

## 2011 Fishtrap Creek Electrofishing Section 1 of Beartrap Creek

Sampling Date 7/14/2011

Water Temp. 6.5°C

Section length: 97 m; Average Section width: 4.7 m

Data Collectors: TT, RD, EF Latitude N.47.84515 Longitude W.115.17422 Electrofishing settings: Hz = 40; mS = 2; Volts = 550; Conductivity = 127 Duration  $1^{st}$  Pass = 4,899; Duration  $2^{nd}$  Pass = 2,611

Tailed frogs: Absent; Sculpin: Absent

Table D-16. Data collection during 2011 electrofishing in Beartrap Creek, Section 1.

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     | Comments |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|----------|
| BULL    | 97     | 7      | 1      |                   | 29              | 985121012756194 |          |
| BULL    | 102    | 10     | 1      |                   | 26              | 985121012756342 |          |
| BULL    | 102    | 9      | 1      |                   |                 | 985121012733531 |          |
| BULL    | 104    | 8      | 1      |                   |                 | 985121012742789 |          |
| BULL    | 108    | 11     | 1      |                   | 25              | 985121012768621 |          |
| BULL    | 109    | 11     | 1      |                   | 27              | 985121011607331 |          |
| BULL    | 109    | 10     | 1      |                   |                 | 985121012729872 |          |
| BULL    | 109    | 11     | 1      |                   |                 | 985121011606843 |          |
| BULL    | 110    | 12     | 1      |                   |                 | 985121012729778 |          |
| BULL    | 110    | 11     | 1      |                   |                 | 985121012764124 |          |
| BULL    | 111    | 11     | 1      |                   |                 | 985121012612677 |          |
| BULL    | 111    | 12     | 1      |                   |                 | 985121012731959 |          |
| BULL    | 112    | 13     | 1      |                   |                 | 985121012612341 |          |
| BULL    | 112    | 14     | 1      |                   |                 | 985121012617112 |          |
| BULL    | 113    | 12     | 1      | 1743-54           | 22              | 985121012729879 |          |
| BULL    | 113    | 13     | 1      |                   |                 | 985121012733334 |          |
| BULL    | 113    | 12     | 1      |                   |                 | 985121011608661 |          |
| BULL    | 115    | 11     | 1      | 1743-52           | 20              | 985121012742585 |          |
| BULL    | 115    | 13     | 1      |                   |                 | 985121012614526 |          |
| BULL    | 116    | 14     | 1      |                   | 28              | 985121012761472 |          |
| BULL    | 116    | 15     | 1      |                   |                 | 985121011607826 |          |
| BULL    | 117    | 16     | 1      |                   |                 | 985121012756475 |          |
| BULL    | 118    | 14     | 1      |                   |                 | 985121012767478 |          |
| BULL    | 119    | 14     | 1      | 1743-47           | 17              | 985121011606743 |          |
| BULL    | 119    | 14     | 1      |                   | 24              | 985121012612765 |          |
| BULL    | 119    | 15     | 1      |                   |                 | 985121012612954 |          |
| BULL    | 119    | 15     | 1      |                   |                 | 985121011605206 |          |
| BULL    | 120    | 14     | 1      | 1743-53           | 21              | 985121012639928 |          |
| BULL    | 120    | 16     | 1      |                   |                 | 985121012647933 |          |
| BULL    | 120    | 14     | 1      |                   |                 | 985121012764173 |          |
| BULL    | 122    | 17     | 1      |                   |                 | 985121012730312 |          |
| BULL    | 124    | 16     | 1      |                   |                 | 985121012729441 |          |
| BULL    | 124    | 18     | 1      |                   |                 | 985121011606583 |          |
| BULL    | 124    | 19     | 1      |                   |                 | 985121012648096 |          |
| BULL    | 124    | 16     | 1      |                   |                 | 985121012764697 |          |
| BULL    | 125    | 16     | 1      |                   | 23              | 985121012758389 |          |
| BULL    | 127    | 17     | 1      | 1743-48           | 18              | 985121012722720 |          |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     | Comments  |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|-----------|
| BULL    | 129    | 19     | 1      | _                 | -               | 985121012610724 |           |
| BULL    | 132    | 18     | 1      |                   |                 | 985121012647611 |           |
| BULL    | 135    | 21     | 1      | 1743-51           | 19              | 985121012742451 |           |
| WCT     | 71     | 4      | 1      |                   |                 |                 |           |
| WCT     | 75     | 4      | 1      |                   |                 |                 | Mortality |
| WCT     | 75     | 4      | 1      |                   |                 |                 |           |
| WCT     | 76     | 4      | 1      |                   |                 |                 |           |
| WCT     | 76     | 4      | 1      |                   |                 |                 |           |
| WCT     | 76     | 4      | 1      |                   |                 |                 | Mortality |
| WCT     | 77     | 4      | 1      |                   |                 |                 |           |
| WCT     | 78     | 4      | 1      |                   |                 |                 |           |
| WCT     | 80     | 5      | 1      |                   |                 |                 |           |
| WCT     | 80     | 6      | 1      |                   |                 |                 |           |
| WCT     | 80     | 5      | 1      |                   |                 |                 |           |
| WCT     | 80     | 4      | 1      |                   |                 |                 |           |
| WCT     | 80     | 5      | 1      |                   |                 |                 |           |
| WCT     | 80     | 5      | 1      |                   |                 |                 |           |
| WCT     | 81     | 5      | 1      |                   |                 |                 |           |
| WCT     | 82     | 5      | 1      |                   |                 |                 |           |
| WCT     | 82     | 5      | 1      |                   |                 |                 |           |
| WCT     | 82     | 5      | 1      |                   |                 |                 |           |
| WCT     | 84     | 5      | 1      |                   |                 |                 |           |
| WCT     | 86     | 5      | 1      |                   |                 |                 |           |
| WCT     | 87     | 5      | 1      |                   |                 |                 |           |
| WCT     | 87     | 5      | 1      |                   |                 |                 |           |
| WCT     | 87     | 6      | 1      |                   |                 |                 |           |
| WCT     | 88     | 7      | 1      |                   |                 |                 |           |
| WCT     | 89     | 7      | 1      |                   |                 |                 |           |
| WCT     | 90     | 7      | 1      |                   |                 |                 |           |
| WCT     | 90     | 7      | 1      |                   |                 |                 |           |
| WCT     | 92     | 8      | 1      |                   |                 |                 |           |
| WCT     | 92     | 7      | 1      |                   |                 |                 |           |
| WCT     | 92     | 7      | 1      |                   |                 |                 |           |
| WCT     | 93     | 7      | 1      |                   |                 |                 |           |
| WCT     | 94     | 8      | 1      |                   |                 |                 |           |
| WCT     | 95     | 8      | 1      |                   |                 | _               |           |
| WCT     | 95     | 7      | 1      |                   |                 |                 |           |
| WCT     | 96     | 7      | 1      |                   |                 |                 |           |
| WCT     | 96     | 8      | 1      |                   |                 |                 |           |
| WCT     | 97     | 7      | 1      |                   |                 |                 |           |
| WCT     | 97     | 10     | 1      |                   |                 |                 |           |
| WCT     | 98     | 9      | 1      |                   |                 |                 |           |
| WCT     | 98     | 9      | 1      |                   |                 |                 |           |
| WCT     | 99     | 8      | 1      |                   |                 |                 |           |
| WCT     | 100    | 10     | 1      |                   |                 |                 |           |
| WCT     | 100    | 10     | 1      |                   |                 |                 |           |
| WCT     | 101    | 10     | 1      |                   |                 |                 |           |

| Species | Length | Weight | Pass # | Genetic<br>Sample | Scale<br>Sample | PIT Tag No.     | Comments  |
|---------|--------|--------|--------|-------------------|-----------------|-----------------|-----------|
| WCT     | 102    | 10     | 1      |                   |                 |                 |           |
| WCT     | 102    | 10     | 1      |                   |                 |                 |           |
| WCT     | 103    | 10     | 1      |                   |                 |                 |           |
| WCT     | 104    | 11     | 1      |                   |                 |                 |           |
| WCT     | 106    | 11     | 1      |                   |                 |                 |           |
| WCT     | 106    | 11     | 1      |                   |                 |                 |           |
| WCT     | 109    | 12     | 1      |                   |                 |                 |           |
| WCT     | 115    | 14     | 1      |                   |                 |                 |           |
| WCT     | 119    | 15     | 1      |                   |                 |                 |           |
| WCT     | 120    | 12     | 1      |                   |                 |                 |           |
| WCT     | 121    | 17     | 1      |                   |                 |                 |           |
| WCT     | 125    | 17     | 1      |                   |                 |                 |           |
| WCT     | 126    | 20     | 1      |                   |                 |                 |           |
| WCT     | 130    | 21     | 1      |                   |                 |                 |           |
| WCT     | 132    | 22     | 1      |                   |                 |                 |           |
| WCT     | 133    | 22     | 1      |                   |                 |                 |           |
| WCT     | 134    | 24     | 1      |                   |                 |                 |           |
| WCT     | 136    | 24     | 1      |                   |                 |                 |           |
| WCT     | 142    | 30     | 1      |                   |                 |                 |           |
| WCT     | 142    | 28     | 1      |                   |                 |                 |           |
| WCT     | 155    | 34     | 1      |                   |                 |                 |           |
| WCT     | 173    | 55     | 1      |                   |                 |                 |           |
| WCT     | 181    | 57     | 1      |                   |                 |                 |           |
| WCT     | 197    | 68     | 1      |                   |                 |                 |           |
| BULL    | 107    | 10     | 2      | 1743-46           | 16              | 985121012724018 |           |
| BULL    | 111    | 12     | 2      | 1743-43           | 14              | 985121011604540 |           |
| BULL    | 117    | 13     | 2      | 1743-44           | 15              | 985121012732045 |           |
| BULL    | 131    | 20     | 2      | 1743-41           | 13              | 985121012768432 |           |
| WCT     | 80     | 5      | 2      |                   |                 |                 |           |
| WCT     | 82     | 5      | 2      |                   |                 |                 |           |
| WCT     | 94     | 8      | 2      |                   |                 |                 |           |
| WCT     | 115    | 15     | 2      |                   |                 |                 |           |
| WCT     | 136    | 28     | 2      |                   |                 |                 |           |
| WCT     | 137    | 25     | 2      |                   |                 |                 | Mortality |
| WCT     | 139    | 24     | 2      |                   |                 |                 |           |

## 2011 Fishtrap Creek Electrofishing Section 2 of Beartrap Creek

Sampling Date 7/28/2011

Water Temp. 6.5°C

Section length: 100 m; Average Section width: 2.2 m

Data Collectors: TT, RD, EF Latitude N.47.84463Longitude W.115.19190 Electrofishing settings: Hz = 50; mS = 2; Volts = 750; Conductivity = 41

Duration  $1^{st}$  Pass = 1,555

Tailed frogs: Absent; Sculpin: Absent

Table D-17. Data collection during 2011 electrofishing in Beartrap Creek, Section 2.

| 1    | No fish observed                                                                                                                                                         |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mete | m looks to be perenial in this reach. Went downstream 700 rs (1/2 way to section 1, 47.84378 115.18136) and shocked at for ~50 meters. Found 5 WCT (~90, 110, 120,130, & |